![]() Projets et liens |
![]() Exercices et notions |
![]() Devoirs |
![]() Énigmes |
![]() Photos |
![]() Divers |

|
Ayant enseigné dans plusieurs
classes de niveau primaire, j'ai constaté
que plusieurs élèves éprouvaient de la
diffculté à écrire les nombres
supérieurs à 1 000. Voici des exemples typiques des
erreurs que j'ai observées :
1 94 (au lieu de 1 094)
12 10 (au lieu de 12 010) 2000 12 (au lieu de 2 012) etc. Alors,
en tant que pédagogue, je me suis demandé ce que je
pouvais
faire pour faciliter
l'écriture des nombres chez les élèves. Après plusieurs
réflexions, j'ai pensé à une nouvelle approche
![]() de
l'écriture des nombres.
|
|
Ayant
expérimenté cette
nouvelle approche, voici ce que j'ai constaté :
A. Les enfants qui
étaient capables de bien écrire les nombres ont
rapidement saisi la nouvelle approche. La plupart d'entre eux ont
été capables d'écrire des nombres
plus grands qu'auparavant.
B. La grande majorité des élèves qui éprouvaient des difficultés avec l'écriture des nombres ont été capables de répondre aux attentes du Programme de formation en ce qui a trait à l'écriture des nombres. En addition, plus de la moitié d'entre eux ont même dépassé ces attentes. C. Aucun élève qui répondait aux attentes avant la nouvelle approche a régressé en ce qui a trait à l'écriture des nombres. |
|
A. Ici, il n'y a rien de nouveau. Il doit y avoir un espace entre chaque paquet de trois
chiffres en partant de
la droite.
Voici trois exemples : 123456 |
|
B.
Le nouveau
commence ici. Tout nombre doit s'écrire
avec des paquets de trois chiffres.
Cela implique que les exemples suivants ne sont pas corrects 1 231 98 797 0 3 7 46 5 678 654 90 10 424 et que ceux-ci sont corrects. 478 563 123 234 784 607 346 965 394 333 111 128 392 |
|
Que
faire quand les nombres ne semblent pas pouvoir s'écrire avec
des paquets de trois chiffres ?
Cela nous mène vers la notion des zéros. |
|
A. Des zéros (un ou deux) seront
ajoutés à tout nombre auquel il manque un ou deux
chiffres pour pouvoir s'écrire
avec des paquets de trois chiffres. Puisque que la séparation
des nombres se fait de la droite vers la gauche, il n'est pas
surprenant que les zéros soient ajoutés à
l'extrémité gauche du nombre.
Exemples : 32 |
|
B.Quand
rien ne
précède un zéro (0) ou que le zéro à
sa gauche est suivi de rien, il faut hachurer ce zéro. Bref, il
faut regarder à la gauche du zéro pour savoir ce qu'il y
a. Si nous sommes en présence de rien ou d'un zéro qui
lui est précédé de rien, il faut hachurer ce
zéro.
Attention !Il faut regarder ce qui précède immédiatement le zéro à la gauche. Exemples : 99 5 10 078 000 |
|
C. Pour les nombres qui ne sont pas
entiers, les mêmes règles s'appliquent et une nouvelle
s'ajoute, soit la suivante : À la droite de la virgule, tout
zéro précédé, à sa gauche, d'une
virgule ou d'un zéro qui lui est précédé
d'une virgule, doit être hachuré et effacé par la
suite.
Exemple : ØØ5, 3 Cette "double-étape" est ce
qui permet à plusieurs enfants de comprendre que les
zéros hachurés peuvent être omis, ce qui constitue
la transition entre la nouvelle approche et l'approche traditionnelle. |
|
À
mon avis, il faudrait
commencer à
montrer cette façon d'écrire les nombres dès la
maternelle et même
avant. Bien entendu, il ne s'agit pas, au début, de tout
expliquer aux
enfants, mais plutôt de les mettre en contact avec des nombres
écrits
de cette façon. Plus les gens de l'entourage de l'enfant
emploient
cette approche, plus les enfants l'acquerront rapidement. Il est aussi
important, pour que l'apprentissage de cette approche soit la plus
efficace possible, que ce qui est montré à la maison soit
en continuité
avec ce qui est enseigné à l'école et vice versa.
En addition, apprendre cette nouvelle approche, tout comme apprendre
autre chose, exige du temps. Autrement dit, il faut laisser la chance
aux enfants de la maîtriser avant de l'évaluer.
Il
est à noter que la transition entre la nouvelle approche et
l'approche traditionnelle est très facile. Il s'agit de
mentionner aux enfants que nous pouvons effacer un zéro
hachuré. Petit à petit, ils vont l'omettre. Je
considère que la transition devrait être faite lorsque les
nombres à virgules sont enseignés.
|

Pour accéder
aux exercices (nouvelle approche) |
Pour voir l'écriture de nombres
selon la nouvelle approche ![]() |

![]() Projets et liens |
![]() Exercices et notions |
![]() Devoirs |
![]() Énigmes |
![]() Photos |
![]() Divers |