WEB VAL 2.0 DOCUMENTATION

[image: image1.png]DISPLAY ERRORLOG

A PROJECT ON TOWARDS AN AUTONOMOUS BIBLIOGRAPHY BUILDING AGENT

[image: image2.jpg]

[image: image3.jpg]WeEs
WL

2.0

INTRODUCTION

WEB VAL 2.0

1. - Project Introduction

The title of the overall project I am doing in Kent Ridge Digital Labs is 'Towards An Autonomous Bibliography Building Agent’ also easily known as ABBA. ABBA is a text mining program that will automatically organise bibliographic information of a particular document into a standardised bibliographic format.

The project I did for this industrial attachment deals with validating hyperlinks in a webpage on the Internet.

Take for example that this project is focusing on documents on the Internet, specifically documents on RoboCup papers. Basically the project will create a program that will go to the Internet and search for new RoboCup papers, an example would be on-line conference proceedings, magazines, minutes of meetings, books, HTML documents, word documents, journals and magazines and many more.

Upon identifying the required information on the Internet, the program will fetch the documents onto the local drive using the HTTP function. Once the information is in the local drive, the program will begin to parse the documents to identify and select the necessary information needed by the user. As for this case, all the hyperlinks in that particular fetched page is noted down. The program will then select those hyperlinks and validate the existence or validity of each hyperlinks found in that fetched webpage sequentially. After the program have finished validating all the hyperlinks in the webpage. It will list down all the invalid hyperlinks onto a list-box for display. The program will also stores the processed information neatly as to aid retrieval.

This project aims (project’s mission statement) at easing the tedious tasks of webmasters in their maintenance of website work. This program will definitely ease the task of the webmasters in manually validating each hyperlink in a webpage one by one.

Project ABBA is an autonomous text mining program, I have some general knowledge of how a text miner functions, and since I did some research work on autonomous text mining program, I have been given the opportunity of creating a simple autonomous text mining program by using a programming software known as Microsoft Visual Basic 5.0.

My program ‘Web Val 2.0’ satisfy the basic text mining function as it identifies all the hyperlinks in the webpage (by utilising the text manipulation techniques in Visual Basic). It also satisfies the basic autonomous functions as it validate each link autonomously without prompting the user. It autonomously separates the valid and invalid hyperlinks apart from one another, and it also organised the invalid hyperlinks for the user to take note. It will prompt the user only if a process has been completed; an example would be the appearing of a message box for the user to acknowledge (click on the ‘OK’ button on the message box) once the validation of the hyperlinks is completed.

[image: image4.jpg]

[image: image5.jpg]CLEAR PROCESSED URLs
4

DESCRIPTION
WEB VAL 2.0

2. - Project Description
[image: image6.jpg]CLEAR FRROR LOG.

Since Project ABBA deals with the advance technology of text mining, I am given a programming assignment by my supervisor, Mr. Tralvex Yeap. The assignment is to create a similar prototype program that basically has a little bit of the function of Project ABBA. The project I work on is known as ‘Web Val 2.0’.

This program is used for validating the hyperlinks on the Internet. This program will validate the validity of each hyperlink found in a particular webpage fetched by the program. It is very useful for webmasters in managing information on the Internet, especially those websites that carries hundreds and thousands of links. I created this program using Microsoft Visual Basic 5.0. As mentioned above, this program is a second prototype, the first version of the prototype is known as ‘Web Validator’. It have some of the basic functions of the recent ‘Web Val 2.0’ program, and through this first prototype known as ‘Web Validator’, I created the second prototype, with some of its bugs fixed and some enhancements of its features.

What this program does is that is will enter a website with links, and validate the existence of those links in that particular website. Links with errors are taken into consideration and are noted electronically by the program. The program will then present the errors to the user. All the invalid hyperlinks that have been validated will be presented with the time and date of validation affixed on top of the list. The webpage Url is also noted on top of the error list, on a line below the session statement that states ‘This Url is validated on’.

This program helps web-masters in their URL validating work, and also for those Internet surfers who have a very hard time maintaining and updating their website with many hyperlinks links.

2.1. - How the program functions

Basically the program have four different part in executing the process of validating the hyperlinks, and they are:

1. Fetching Function.

2. Validating Function.

3. Displaying Function.

4. Deleting Function.

All these four functions will be elaborated on the subsequent pages.

2.1.1. - Fetching Function

[image: image7.jpg]Enter URL

e/

For the fetching function, the program uses the Internet transfer control tool known as Microsoft Internet transfer Control Tool or technically known as Inet1 (refer to the image on the left). This tool will do the fetching function. It acts like a search engine and will fetched the source codes of a particular Url (specify by the user) onto the local program for validation. Below are some of the extracts from the original programming source codes of the Web Val 2.0 program created in Microsoft Visual Basic 5.0.

E.g.
rtb1.Text = Inet1.OpenURL(txtSelectedUrl.Text)

The programming line above tells the program to open or fetch the Url (Inet1.OpenURL) written on the text box labelled txtSelectedUrl.Text by using the Microsoft Internet transfer Control Tool labelled as Inet1.

2.1.2. - Validating Function

There are four parts to the validation process, and they are:

1. Searching Function

2. Validating Function

3. Channelling Function

2.1.2.1 - Searching Function - Searching for the hyperlinks within the fetched webpage.

 To search for all the hyperlinks in the fetched webpage, I optimised the string manipulation techniques. Basically I programmed the program to search for stings of characters beginning with http://. Basically what I did was I specify the start and end tag of the hyperlinks. The program will then parse the fetched source codes of the webpage sequentially from the top of the webpage to the bottom I identifying all the hyperlinks available. The program can also detect hyperlinks appended onto a graphical object (e.g. JPEG or GIF images). This is made possible because most hyperlinks consist of the set of string characters that begins with http://, and I perform the validation task by using the webpage’s source codes and not the actual webpage itself. Source codes are all in text format so it is easier for identifying those hyperlinks within the webpage.

2.1.2.2 - Validating Function - Validating the identified hyperlinks sequentially.

 Upon identifying a hyperlink, the program will again fetch the source codes of the hyperlinks onto a text box (invisible to the user, background process). If the source codes is fetched and available in the textbox, it means that the hyperlinks is valid, and vice versa. And if the source codes of the hyperlink is not fetched and is not available in the text box, and if an error message if fetched instead of the source codes, it means that the hyperlink is invalid.

2.1.2.3 - Channelling Function - Channelling the valid and invalid hyperlinks to their designated list box.

 I programmed the program in a way that if the source codes are available in the text box, the program will sent the Url of the hyperlinks onto the ‘Good Hyperlinks’ list box to be displayed. And if the text box is empty or no proper source codes are being fetched, then the program will channel the Url of that hyperlinks onto the list box labelled ‘Bad Hyperlinks’ to be displayed.

2.1.3. - Displaying Function

This display function only applies to the invalid Urls. It is not applicable to the valid Urls because our main concern is to note down those invalid Urls only. All those invalid Urls will sequentially be appended to the external error.txt file during the validation process. Once the validation is done. The external error.txt file can be displayed onto the program by clicking a command button labelled ‘Display Error Log’ or press a set of command keys ‘Alt’ and ‘D’.

E.g.
Open "error.txt" For Input As #Filenumber

Do While Not EOF(Filenumber)

Input #Filenumber, DataText

errorlog.AddItem DataText

Loop

Close #Filenumber

Above is the command for the inputting of data onto the error log on the program labelled as errorlog.

2.1.4. - Deleting Function

To delete all the processed Urls, Url list and the error log, the user can click any one of the three command buttons available on the program. Basically the clearing of the interface text and list boxes are done by using the clear command.

E.g.
Datavali.Clear

Datavali is the name of the list box that contains the validated invalid Urls. To clear the external text files, basically I use the open file command.

E.g.
Open "Error.txt" For Output As #Filenumber

Close #Filenumber

Error.txt is the external error file that holds all the invalid hyperlinks with the date and time of validation appended to the top of the file, along with its Url site. Once the open command file is executed, all the old information appended to that file will be deleted, as the file is open and ready to accept new data onto it.

Basically that is the generic explanation to the processes of my Web Val 2.0 program. Please refer to the full original source codes in the appendix section of this documentation for the comprehension of the full function and execution of the program.

[image: image8.jpg]ADD URL TO LIST

[image: image9.jpg]URL List
e/ kil g s/

GRAPHICAL EXPLANATIONS
WEB VAL 2.0

3. - Graphical Explanation to Program Execution

In this section of the Web Val 2.0 documentation. I will briefly elaborate the process of my program in a graphical manner.

3.1. - Overall graphical explanation to the validation process
[image: image10.jpg]

[image: image11.jpg]FETCHURL

[image: image12.jpg][<HTML>
|<HEAD>
<META HTT. charselsiso 88531

oLive CyberStudi’
[<TITLE s Welcome to Paiic Sur, Your Guids to the Best o the Net</TITLE>

ld 1

[image: image13.jpg]FALIDATE ALL LINKS

[image: image14.jpg]Good HyperLinks Bad Hyperlinks
1 hitp://chat pacfic.net sa/carbin/iav.2] [T8 hi:/Zwiww. healtnet com sq
2. hitp:/unaw.pacweb.net sa/pacweb™ | 23. hitp://www.rougheut comyindes bl
3. hitpi/ v mediaworks.com.sa
4. hitp://altavista,digital.com/carbin/a.x]

[image: image15.jpg]

[image: image16.jpg]Error Log

The folowing UAL is vaidated on Wednesday,
Dctober 14

1935 ot 12:34 PM,

URL - it /7w i net sg/

vald hyperinks belon.
18 htp://mans hesltet com.sg

e b ol

[image: image17.jpg]Error Log
The foloning URL is vaidated on Thuisday
Dctober 15
1938 ot 1:12:17 PM,
URL - it /o, cyberway com sg/

vald hypesiks belon.

[image: image18.png]DISPLAY ERRORLOG

[image: image19.jpg]* WEB VAL 2.0

Enter URL URL List
e/ g/ il og. s/
it/ s singrt.com sa/
Fetched URL
[<HTML>
|<HEAD>

[<META HTTP-EQUIV="cor
[<META NAME="generator”

[<TITLE> Welcome to Paiic Sur, Your Guide to the Best of the Net</TITLE>

/i charset=iso 885915
‘oL ive CyberStud

5

wWEn

1Was

vald hyperirks belon.
18 g //muns hesltet con.sg

FETCH URL
4. hitp.//alavista.digital. com/ct bin/ gz
s e JE—
e oo UL s vldaed o W |

Status: Error log displayed.

3.2. - Explanation to the validation process
The validation process is done in this way. The program will use the Internet Transfer Control 5.0 tool to fetch the webpage by referring to the Url specified by the user.

Once the webpage’s source codes is fetched onto the program, the program will parse the documents from top to bottom, detecting all the hyperlinks sequentially, it will then validate each individual hyperlink (by fetching the hyperlink’s source codes) found on the fetched webpage. If the Internet Transfer tool (Inet1,) manages to retrieved the link’s full source codes, it indicates that the link is valid, and it will then put the validated link to the ‘Good Hyperlinks’ list box; and otherwise if an error message is retrieved instead, or no source code is retrieved, it indicates that that particular link is not a valid link. The program will then put the validated bad links sequentially to the ‘Bad Hyperlinks’ list box, separated from the good links.

All good and bad links are listed down sequentially with numbers appended to each of them. The numbers appended infront of the hyperlinks are the unique numbers of each hyperlinks within the webpage that is validated.

INSTRUCTIONS
WEB VAL 2.0

4. - Usage Instructions
Below are the explanations and instructions on how to use the program 'The Web Val 2.0'. Extracts from the Readme.txt file that accompanied the Web Val 2.0 program.

Follow the instructions below and it will guide you through the process of validating a webpage in a specified website.

Make sure that you copy the EXE of this program from the floppy drive, over onto your local hard drive first before running it.

NOTE: This program runs within a proxy setting of 173.132.142.32:8080 by Kent Ridge Digital Labs, therefore it may not work outside the LAN.

4.1. - ADDING FUNCTION

1.) Enter the URL in the 'Enter URL' text-box, located at the top of the program.

2.) Click the command button labelled 'ADD URL TO LIST' or press 'Alt' and the key 'A'. This will add the typed URL into the list box containing previously typed Urls for future usage.

3.) Select a URL to fetch (point and click your mouse cursor to the chosen Url) from the list-box labelled 'Select URL from the list below'.

4.) When you select a particular URL in the list box containing the Urls, your selected Url will appear in the box labelled 'Selected URL'.

4.2. - VALIDATING FUNCTION

5.) Once the URL is selected, press the command button labelled 'Fetched URL' or the combination of command keys, which are 'Alt' and the key 'F'.

The fetched Url will appear in the box labelled 'Fetched URL website' in the form of HTML source codes. A pop-up message box will appear, prompting you to proceed on with the process. If there are no HTML source codes fetched for that particular URL, then the URL of that website is not valid, please check the URL again.

6.) To Validate the links in the fetched URL website, click onto the command button labelled 'VALIDATE ALL LINKS' or 'Alt' and the key 'V'. The program will search and validate all links in the fetched URL website sequentially from the top to the bottom of the page. After each link is validated, a pop-up message box will appear, prompting you to proceed on with the validating process. The validated valid Urls will be listed sequentially in the box labelled Good Hyperlinks' and those Url with errors will be listed in the box labelled 'Bad Hyperlinks'.

NOTE: The number that appears before the validated hyperlinks in a particular validated Url (webpage) is unique as it is the sequential number of the overall webpage's hyperlinks.

E.g.:
1. http://www.happening.com/new

2. http://www.indra.com/personal/pictures

3. http://www.fortunecity.com/skyscraper/decimal/439/

The program will validate the hyperlinks in a particular webpage sequentially from the top to the bottom of the webpage. Those hyperlinks that appear on the top portion of the webpage will have a smaller number value if compared to the number of those hyperlinks located at the bottom of the validated webpage, due to the sequential numbering.

4.3. - DISPLAYING FUNCTION
Most of the functions are autonomous, upon an execution the program will automatically display the information, either it is a fetched Url, bad hyperlinks, good hyperlinks or entering Urls.

7.) To display the error log, click the command button labelled 'DISPLAY ERROR LOG' or 'Alt' and the key 'D'.

The error log contains a list of validated bad hyperlinks with the URL, date and time of validation. If there is no hyperlinks found below the statement that says ‘Invalid hyperlinks below’, it means that the validated URL has no invalid hyperlinks. Refer to the diagram below. The diagram above is an example of a URL with some invalid hyperlinks (http://www.healthnet.com.sg).

4.4. - DELETING FUNCTION
8.) The command button labelled 'CLEAR URL LIST' will empty the list-box containing the types Urls upon clicking. You can also use a combination of command keys like 'Alt' and 'U' to clear the Url list-box.

9.) The command button labelled 'CLEAR PROCESSED URLs' will empty the list-box labelled 'Good URLs' containing the validated URLs that is valid and the 'Bad URLs' containing the Validated URLs that is invalid. You can also use the command keys like 'Alt' and 'P' to the clearing of the processed Urls that have been validated.

10.) The command button labelled 'CLEAR ERROR LOG' will empty the list-box labelled 'Error Log' containing all the bad validated hyperlinks. The combination of 'Alt' and 'L' command keys will also perform the function of clearing the error log.

NOTE: Please clear the Validated hyperlinks first before validating another.

4.5. - TERMINATING FUNCTION
11.) Press the command button labelled 'EXIT' to end the application or to abort the validating process.

PROBLEMS AND SOLUTIONS
WEB VAL 2.0

5. - Problems Encountered and Solutions
5.1. - Problem and Difficulties
The polytechnic course that I am currently in (Information Studies) does not really focus on programming, and due to lack of programming exposure, I confronted with some difficulties when creating the Validator program. For example, initially I did not know how to write down the programming codes to execute the functions of the program. And I also did not know how to debug the error messages that appear when the program cannot perform its functions. All the problems contribute to frustrations and agitation. But I do not give up.

Actually I did not expect to be doing a programming assignment when I am attached to Kent Ridge Digital Labs. It is really a hard-to-cope thing for me, but on the whole I did a lot of things just to get a product done, and finally I manage to come out with a simple validating program.

There seems to be some problems with the network at my work place, sometimes I cannot access the Internet due to server problems. Many times the program I am running got hanged and it cannot stop its execution. Even when I click at the stop and end buttons several times. Every time I have to reboot my computer just to make the program work again, and sometimes the new programming line that I inserted into the program is lost just like that, as I have no time to save the program in time before the disaster strikes. When the server is down, I cannot perform any debugging procedure and cannot carry on working on the program. A lot of time is thus wasted. There seemed to be some problems with the software I am using also.

5.2. - Solutions to Problem and Difficulties
In order to solve all those problems, first of all I have to calm myself down and believe that I can solve the problems. I have to make the initiation to borrow some textbooks on the fundamentals of Visual Basic 5.0. I went to four different public libraries (National Library, Bedok Community Library, Tampines Regional Library and Geylang East Community Library) to search and borrow the textbooks. I managed to get three books that pertain to the things I did in Visual Basic 5.0. After reading some of the relevant chapters in those books, I manage to solve some of the errors in my program. I also discuss with my colleague, Daniel, on how to solve the errors, and after some intense discussion, we manage to solve some bugs in the program. For those unsolved errors, I have to approached my supervisor for advice.

To complete the program, I forced myself to learn as much as possible in a short period of time (sometimes did not get enough sleep). Books, mailing list, discussion list, tips from friends and supervisors are all put into good use.

To prevent confronting with the server problem, I usually test the reliability of the network first by surfing the net for around five minutes. When I felt that it is reliable enough for my program to work on, I will then use it and work on my program. Sometimes I even work overtime at home and performed the debugging procedure directly from my home computer. If I used from my home computer, I have to reconfigure the proxy setting. It’s a little bit troublesome, but that is what I have been doing for the last three weeks and I did it.

CHRONOLOGICAL DEVELOPMENT
WEB VAL 2.0

6. - Chronological Development of the Program

Below is the chronological development of the program throughout the entire fifteen weeks attachment period. It includes the methods of learning the Visual Basic software and the development of the program.

WEEK
DATE
DESCRIPTION

1
6/7/98

to 12/7/98
· Learning chapter 1 and 2 of Visual Basic 5.0 book (vb5), hands-on practice on lesson learned by creating some sample VB programs.

2
13/7/98 to 19/7/98
· Learn Microsoft Visual Basic 5.0, chapters 3 to 11.

· Create some sample application after learning the chapters of the Microsoft Visual Basic 5.0 (vb5).

· Search for resources on the World Wide Web for Visual Basic programming tips (vb5 tips and hints) and programming codes by using the search engine known as WebFerret (a search engine that search on other multiple search engine).

· Read handouts on Text Mining with accompanying diagrams on the process of Text Mining given by Tralvex.

· Try to create some sample application using Microsoft Visual Basic 5.0 after learning how to write programming codes to create some sample application.

3
20/7/98 to 26/7/98

· Run through some vb5 sample programs codes and select those that can be used for Project ABBA. Try out the programs to see whether are they working or not.

· Read and focused greatly on writing and reading of sequential file from the book entitled 'Discover Visual Basic 5', chapter 18.

· Create sample example (known as 'Sequential File') by following the tutorial in chapter 18 of the 'Discover Visual Basic 5'.

· Understanding and solving the sample example error, refer back to VB notes and information from the Internet.

· Read summary notes (entitled 'Discovery Centre') on Visual Basic 5.0 from the book entitled 'Discover Visual Basic 5', chapters 1 to 10.

· Subscribe to Visual Basic discussion list at MAISER, obtained from AOL, and VB 5 Assistant, obtained from Mark's Christian and Computing Domain.

4
27/7/98 to

2/8/98
· Learning the usage and evaluation of 3 VB Internet libraries. Try to use the VB tools provided by the 3 VB Internet libraries. Face some problems when using them due to missing program components.

· Read publicly available mailing list on VB Internet programming.

5
3/8/98

to

9/8/98
· Understanding the source codes in the sample application that I previously created for the Web Validator and try to add new codes to suit the project guidelines.

· Development of WEB Validator using Visual Basic 5.0. Constructing the file display and URL fetch function by using the VB Internet Transfer Control Tool. Fetched URL are displayed in HTML format/codes in the text-box in the program itself.

· Program a control that will select and display the fetched webpage URLs for validation.

· Create a validating control use to validate the fetched webpage from the selected URL from the URL list-box.

6
10/8/98 to 16/8/98
· Create the validating portion of the program. First store the selected links sequentially as a string with unique numerals attached to each of them, then validate the stored links one by one. Validation actions are performed sequentially one after another from number 1 to the end.

· Debugging the program and manage to solve one of the bug. Manage to display the validated Url sequentially one-by-one onto a list-box and display it on the application form (VALIDATOR). Manage to write a source code that can validate links made on image files like 'GIF' and 'JPEG'.

7
17/8/98 to 23/8/98
· Practice making some sample applications using VB5 after reading the Visual Basic textbook entitled 'Visual Basic 5.0 Programming' borrowed from Bedok Community Library. Applications created are mainly based on manipulating strings. Arranging and rearranging (e.g. date) the order of the strings and placing numbers to each line of strings.

· Read information on Fundamentals of Visual Basic 5.0 (especially on variables and string manipulation techniques) in the textbooks entitled VB Tips.

8
24/8/98 to 30/8/98
· Start creating the interface of the 'WebVal 2.0', create simple functions like command buttons for click-execution, rich-text box and list box for information display and labels to the whole interface, labelling each box.

9
31/8/98 to 6/9/98
· Announcement of the new WebValidator known as WebVal 2.0. Finish the interface and adjust its programming codes. Test the program and perform some debugging procedure (e.g. eliminating the pop-up message box after validating each URL, to satisfy its autonomous functions).

· Solving errors in the new program. Try to append numbers to those Url with errors in the list box.

10
7/9/98 to 13/9/98
· Debugging some of the errors in my Visual Basic program. I reprogrammed the programming codes that pertain to the clearing of the Url list box. When the clear Url command button is clicked, all the Url will be cleared from the Url list box and also the fetched Url text box.

· Reorganised the programming codes to obtain a clearer picture of the start and end point of each line of the programming codes. Aim at enhancing the understanding of reading the programming.

11
14/9/98 to 20/9/98
· Read a Visual Basic textbook known as '1001 Programmers VB tips' on solving errors and tips on how to enhance the program by adding useful pop-out input boxes so that the interface will not be clogged. Work on the Visual Basic program, try to use the new functions that I have learnt.

· Append numbers to the error list in my Visual Basic program (Web Val 2.0). Manage to put numbers infront of the bad Url, which has been validated. Numbers appearing infront of the bad Url are the overall numbers from the entire number of Url in the fetched webpage. Each Url in the fetched webpage is given a unique numbers (e.g. 1, 2, 3, etc. from the top of the page to the end of the page sequentially).

12
21/9/98 to 27/9/98
· Try to debug the program further, work on the abort command that is appended to the 'END' command button to terminate the current process of validating the Urls.

13
28/9/98 to 4/10/98
· Insert a new programming line that appends a date and time to the error list in my Web Val 2.0 program. The date is in the long date format and the time is in the normal time format. The string on the error list will be displayed in this manner: Url no., Url, date, and time.

· Create a list box to list down the invalid URLs with the date and time of validation on top of the first bad Url.

· Create a separate program for testing purposes (IPE = isolated program experiment). After achieving the function that is required with the IPE, copy its programming codes to the Web Val 2.0 and try to collaborate its function into the Web Val 2.0 program. Continue on with the debugging process and spent five hours on this process.

· Discuss with colleague on solving the errors; manage to solve some of the problems related to the list box that display the bad validated hyperlinks. Try to append a ‘*BAD*’ text on each bad hyperlinks that is validated.

14
5/10/98 to 11/10/98
· Work on the visual basic program. Try to finalised the program and decided to change it to an .exe file. Try to remove some of the errors in appending a *BAD* logo onto the bad links. Cannot manage to append the bad logo onto the bad links.

· Finalised the functions of the visual basic program known as Web Val 2.0. Decided to ignore the function of appending the ‘*BAD*’ logo onto those validated links that are bad or invalid. Finalised the function of listing all the bad hyperlinks onto the error log on the program itself. The error list will be inclusive of the time and date of validation on top of the bad links that have been validated. The URL is also included in the error log, specifically below the date and time of validation.

· Try the program out for the last time, and try to fix minor errors (e.g. request time-out). Change the visual basic program into a final .exe file after performing some minor debugging and final test.

15
12/10/98 to 16/10/98
· Create documentation for the program, information in the documentation includes the instructions on how to use the program, the source codes, some problems and solution information and the program chronicles.

· Completion of the Web Val 2.0 program. Submit the exe program to my supervisor for grading. Include the zipped up source codes and the main program pieces that make up the Web Val 2.0 program. Also some input and output files used in the program like vatlist.txt, error.txt, vatvat.htm, etc, and the documentation.

APPENDIX
WEB VAL 2.0

7. - Full Original Source Codes to Web Val 2.0
By Indrashah Isa

Attachment Student in Kent Ridge Digital Labs

7.1. - Write the Url and input it onto the list of Url list-box
Private Sub cmdWriteData_Click()

txtstatus.Text = "URL has been added to the URL list"

Dim Filenumber As Integer, DataText As String

Filenumber = FreeFile

DataInput.Clear

 Open "vatlist.txt" For Append As #Filenumber

 Write #Filenumber, txtDataOutput

 Close #Filenumber

 Open "vatlist.txt" For Input As #Filenumber

 Do While Not EOF(Filenumber)

 Input #Filenumber, DataText

 DataInput.AddItem DataText

 Loop

 Close #Filenumber

DataInput.Text = txtDataOutput.Text

txtDataOutput.Text = ""

rtb1.Text = ""

End Sub

7.2. - Selection of the Url from the list box containing the inputted Urls
Private Sub DataInput_Click()

txtstatus.Text = "URL Selected"

txtSelectedUrl.Text = DataInput.List(DataInput.ListIndex)

rtb1.Text = ""

End Sub

7.3. - Fetch the html codes by referring to the selected URL in the txtSelectedURL
Private Sub cmdFetchURL_Click()

txtstatus.Text = "Please wait, while the downloading procedure is in progress."

rtb1.Text = Inet1.OpenURL(txtSelectedUrl.Text)

txtstatus.Text = ""

MsgBox ("The program has finished fetching the URL")

End Sub

7.4. - Validation process of the hyperlinks
Private Sub cmdvalidateURL_Click()

txtstatus.Text = "Please wait, while the validating procedure is in progress."

Dim FileNumber1 As Integer, DataText As String

Dim FileNumber2 As Integer

FileNumber1 = 1

DataVali.Clear

validatedurl.Clear

Open "vatvat.html" For Output As #FileNumber1

Close #FileNumber1

 Open "vatvat.html" For Append As #FileNumber1

 Print #FileNumber1, rtb1.Text

 Close #FileNumber1

 Open "vatvat.html" For Input As #FileNumber1

 Do While Not EOF(FileNumber1)

 Input #FileNumber1, DataText

 Loop

 Close #FileNumber1

'--

 Dim Filenumber As Integer

 Filenumber = FreeFile

Open "error.txt" For Append As #Filenumber

 Print #Filenumber, " "

 Print #Filenumber, "The following URL is validated on " & Format(Date, "Long Date") & " at " & Time & "."

 Print #Filenumber, "URL : " + txtSelectedUrl.Text

 Print #Filenumber, " "

 Print #Filenumber, "Invalid hyperlinks below."

Close #Filenumber

'--

'Search for the start tag of the hyperlinks
searchtag$ = "=" + Chr$(34) + "http://"

Dim Line As String

Open "vatvat.html" For Input As #1

Do While Not EOF(1)

Input #1, Line

If InStr(Line, searchtag$) <> 0 Then

tagpos = InStr(Line$, searchtag$)

'Search for end of http://....
newline$ = Mid$(Line$, tagpos + 2)

endtag = InStr(newline$, Chr$(34))

 If endtag = 0 Then

 Goodhttp$ = newline$

 Else

 Goodhttp$ = Left$(newline$, endtag - 1)

 End If

 n = n + 1

 Debug.Print n; Goodhttp$

 txtvalidatedURL.Text = Goodhttp$

 rtb2.Text = Inet1.OpenURL(Goodhttp$)

 Filenumber = FreeFile

'Channeling the bad hyperlinks to the

 Open "badurl.txt" For Output As #2

 Close #2

 If rtb2.Text = "" Then

 Open "badurl.txt" For Append As #2

 Debug.Print Error(12)

 Print #2, n; "." + " " + Goodhttp$

 Close #2

 '-----------------------------------

 Open "error.txt" For Append As #Filenumber

 Print #Filenumber, n; "." + " " + Goodhttp$

 Close #Filenumber

 '-----------------------------------

 Open "badurl.txt" For Input As #2

 Line Input #2, Goodhttp$

 DataVali.AddItem Goodhttp$

 Close #2

 Else

 'Channeling the valid hyperlinks
 Open "goodurl.txt" For Output As #3

 Close #3

 Open "goodurl.txt" For Append As #3

 Print #3, n; "." + " " + Goodhttp$

 Close #3

 Open "goodurl.txt" For Input As #3

 Line Input #3, Goodhttp$

 validatedurl.AddItem Goodhttp$

 Close #3

 End If

 On Error Resume Next

End If

Loop

Close #1

'--

Open "error.txt" For Append As #Filenumber

 Print #Filenumber, “___”

Close #Filenumber

'--

txtstatus.Text = ""

MsgBox ("Validation Complete")

End Sub

7.5. - Display the error log on to the program
Private Sub cmddisplaybad_Click()

txtstatus.Text = "Error log displayed."

 Dim Filenumber As Integer, DataText As String

 Filenumber = FreeFile

 Open "error.txt" For Input As #Filenumber

 Do While Not EOF(Filenumber)

 Input #Filenumber, DataText

 errorlog.AddItem DataText

 Loop

 Close #Filenumber

End Sub

7.6. - Clear the error log
Private Sub Command1_Click()

Dim Filenumber As Integer

Filenumber = FreeFile

txtstatus.Text = "The error log has been cleared."

 Open "Error.txt" For Output As #Filenumber

 Close #Filenumber

errorlog.Clear

End Sub

7.7. - Clear the URL list-box
Private Sub cmdClearURL_Click()

txtstatus.Text = "URLs in the URL list-box cleared."

Filenumber = FreeFile

 Open "vatlist.txt" For Output As #Filenumber

 Close #Filenumber

DataInput.Clear

txtSelectedUrl.Text = ""

rtb1.Text = ""

End Sub

7.8. - Clear the list-box containing the validated Urls
Private Sub cmdClearProcesURL_Click()

validatedurl.Clear

DataVali.Clear

txtvalidatedURL.Text = ""

txtstatus.Text = "All the processed and validated URLs are cleared."

End Sub

7.9. - End the program
Private Sub EndApplication_Click()

End

End Sub

8. - Web Val 2.0 User Interface

Below is the interface of the program users will be coming across with when they use my program.

THE END
Fetch the specified webpage’ source codes containing the hyperlinks for validation

Fetch the individual Hyperlinks within the fetched webpage by using then Internet Transfer Control Tool

If Url’s full source codes are not available

If Url’s full source codes are available

Send the URL to the ‘Bad Hyperlinks’ list-box

Send the Url to the ‘Good Hyperlinks’ list-box

Generate an error log with the invalid hyperlinks. State the Url, date and time of validation on top of the list of invalid hyperlinks validated for that session.

� EMBED Word.Picture.8 ���

BY INDRASHAH ISA

INFORMATION STUDIES

TEMASEK POLYTECHNIC STUDENT INTERNSHIP PROGRAM

Page 27

_969996084.doc
[image: image1.png]DISPLAY ERRORLOG

