CoWare - Chiplogic Route Processor Demo at DAC

1.0 Overview:

The objective of this project is to demostrate the abilities of CoWare’s N2C tool. The testcase select​ed here is the design of a route processor. The functionality of a route processor is to maintiain and update a route table in it and to provide route look ups. Typically route processors in backbone rout​ers should suport more than million looks-ups per second.

2.0 Problem Statement

To design a route processor which will provide Next Hop port address for a given IP address entry at around 100- 200 ns per look up. The design should also support route table additions and dele​tions at a rate of 100 per sec. For every IP address given at the input, the problem is to find the long​est prefix matcing entry in the route table. For example, if we have two route entries 208.178.0.0/16 and 208.0.0.0/8, and an input IP address comes as 208.178.2.4, the NHP (Next Hop Port) should be that of 208.178.0.0 and not 208.0.0.0. Whereas if the input is 208.155.0.0, the NHP will be that of 208.0.0.0. The design goals should be to get fast look-up, table updation at rate of 100 per sec. (the updates should be local). The design should be scalable to IPV6. It should have feasible amount of memory on a single chip.

3.0
Algorithms Considered

There are numerous algorithms that were proposed for IP route look up. But most of them are soft​ware based. The software based route look up algorithms, has a problem in terms of route lookup with in specified time. If a route is flushed out of the cache, it takes a much longer time to get the NHP for that particular entry. These kinds of behaviour are not acceptable if the router has to ad​dress QoS issues. So we have started our analysis with a pragmatic approach in which memory is in​dexed instead of hashed. It is basically a hardware based approach. It can give lookups in 100 ns. Also route table updation is relatively easy. Scalability is an issue in this kind of an implementation. Related paper is attached in this document. Also there are some novel algorithms that have very small data structures that claim to fit into secondary cache of a memory (1 MB). One such algo​rithm will be selected and it will be taken up for further analysis. Currently we are considering one of hash based algorithm, radix tree, LC-trie and Patricia algorithms (All these algorithms can be im​plemented in hardware) for analysis apart from memory look up.

4.0
Steps for Demo.

In the Demo for CoWare at DAC we plan to demostrate the following capabilities of CoWare’s N2C.

Architectural analysis.

Compare the performance of the algorithms taken in the above case and demonstrate graphically (all the design considerations, Look up speed, Updating Speed, Area occupied) the one that has better performance.

Simulation and Debug

In this phase, the ease of C simulation compared to HDL simulation can be demonstrated.

H/W, S/W partitioning

The better algorithm of the two, determined by the above analysis, will be taken and parts of it will be targeted to Hardware. Here N2C’s software/ hardware partitioning capabilities are emphasised. Here we may not show, any thing graphically (ideas are welcome), but we can show in some charts, the design we have and the reasoning behind taking a block to hardware etc.

C->RTC->HDL.

In this phase, the hardware-targeted blocks are converted into RTC. Here we can emphasise on ease of writing RTC compared to RTL. The concept of clock and reset etc. Here also, it is not decided yet on any graphical figures that we can show.

5.0
PROJECT EXECUTION

The project execution will also be in the similar lines as the demo steps.

Memory Look up algorithm

Understanding the design and Module Spec:

The first method for route look up uses indexing. Studies have shown that considerably large percentage of addresses have less than 18 bits. So the first memory bank indexes 18 bits and can address 2**18 locations. When the address being looked up or updated is 18 bits long, the address is used to index the first memory bank, and the 15 bit NHP is stored in that location addressed by these 18 bits. When the address is less than 18 bit long, multiple locations will be written with the NHP considering the unused address bits as don’t cares. When the address is more than 18 bits, the first 18 bits of this address are used to index the first bank, and a 17-bit pointer to the second memory bank is written at this address. A flag bit is written to indicate whether a NHP or a pointer is located at a given address.

Each pointer entry in the first bank has four entries corresponding to it in the second bank. Appending next 2 significant bits of the IP address to the pointer in the first bank generates the index address to this bank. If the address is longer than 20 bits, the address will contain a pointer to the third memory bank.

The third and fourth banks are exactly similar to the second bank and each of them take two more bits each of the IP address being looked up or updated.

The fifth bank contains NHP entries for addresses ranging in length between 24 and 32 bits long. Each pointer in the 4th bank will have a block of 256 addresses corresponding to it. Depending on the size of memory used, some of the bits in the pointer may be ignored while indexing this memory bank.

A selector block selects the next hop address from an appropriate memory bank.

The first bank will need 256K addressable locations. Other banks will require 512 K addressable locations. Fifth bank can be implemented with a larger memory if required. So this 5 level look up reduces the memory requirement by a large factor when compared to the 2 level lookup suggested in a related publication, which would require 33 MB of memory

A test bench is used to provide an environment, which gives random updates and lookups and so builds the routing table in the router. The decision block, interprets the command and translates them to appropriate memory read or modify operations. The test bench verifies if the next hop address from the router is correct or not.

A block diagram representation of this router scheme is given in the following page.

Figure 1 : Block diagram for the IP lookup router

Testbench (not indicated in the diagram) gives a command to the router. When it is a update command, it also indicates the length of the address in bits and whether it is a add, delete or modify entry operation and then NHP entry for this address. When it is a look up command, it gives just the address.

The decision block interprets the commands from the test bench. When it is an update operation, if the length is l8 bits or less, it modifies the memory contents in the corresponding locations in the first memory bank with the NHP given by the test bench. When the address is longer than 18 bits and less than 20 bits, it reads the pointer in the first memory bank corresponding to the first 18 bits of the address, calculates the address for the second memory bank and writes the NHP entry in the second memory bank. Thus, depending on the length of the address each update may require upto 5 reads to the memory banks. The decision block keeps track of the free address in each memory bank so that when a new entry is added, proper pointer values can be written.

When it is a lookup for a given address, the decision block passes on the address to a splitter block. Addresses to various memory banks are computed depending on whether a pointer was found in the previous memory bank. A select block selects the NHP from the bank it is found and indicates this to the testbench. Testbench can check the validity of this NHP.

Since the decision block does lot of control, it is best to implement it in software. All other router blocks will be implemented in hardware.

First phase of the execution involves the modeling of the test bench and router blocks in C. Primitive protocols are used for channels communicating between different blocks. Functional simulations are run without considering the timing aspect.

When the scheme is proved functionally, the code is converted to bus cycle accurate C. Proper bus protocols are attached to all the communication channels. BCA simulations are run to ensure the correctness of the algorithm in a realistic environment.

Once the BCA simulations are found to be properly running, the next step would be to take it to hardware by carrying out the C to Verilog or C to VHDL conversion.

6.0 Conclusion

Upper_18

Lower_8

NHP

NHP_5

NHP_4

NHP_3

NHP_1

NHP_2

Select

NHP_5

NHP_4

NHP_3

NHP_2

NHP_1

Update_lut5

Update_lut4

Update_lut3

Update_lut2

Update_lut1

Update_lut5

Addr5

Addr_Calc_5

Ptr

Bits23_24

Update_lut4

Addr4

Ptr

Addr_Calc_4

Update_lut2

Update_lut3

LUT_5

LUT_4

LUT_3

Bits21_22

Addr3

Ptr

Addr_Calc_3

LUT_2

Addr2

Bits19_20

Ptr

Addr_Calc_2

Update_lut1

LUT_1

Lower_8

Bits23_24

Bits21_22

Bits19_20

Upper_18

IP Addr

Splitter

NHP

Cmd

Len

Decision

IP Addr

