20

 PAGE 18

 PAGE 18

 PAGE 18

 PAGE 18

 PAGE 18
CLPCI CORE

CLPCI CORE

Verification Plan Document
Ramaprasad K V, Pramod G

Last Modified: August 12,1999

Revision History

DATE

PERSON

REVISION

MODIFICATION

Mar 20 1999

Ramaprasad K V
1.0

Created

Mar 29 1999

Ramaprasad K V
1.0

Elaboration of tests

Mar 30 1999

Ramaprsasd K V
1.0

Some changes in the

 I/O description

TABLE OF CONTENTS
21
Introduction

2
Target Verification Environment
3
2.1.1
Target mode tests
3
3
Initiator Verification Environment
11
3.1.1
Initiator mode tests
11
4 CLPCI VERIFICATION ENVIRONMENT 15
5
I/O Description
20

1 Introduction

CLPCI is a synthesizable core that could be used with an application that needs to be interfaced with PCI bus. CLPCI gives enables the application to work both in initiator as well as in target mode. The following list gives the feature set of CLPCI.

· Supports PCI specification 2.1 protocol at 33/66 MHz

· 32/64 bit address & data paths

· Modular, customizable implementation

· Works both in initiator and target modes

· Maps either to memory or I/O space

· Generation of parity and detection/reporting of parity errors

· Supports all mandatory registers as per PCI spec v2.1

· Supports burst mode operation

· No extra wait states insertion

· Generic application side interface

· Supports master abort

· Supports target abort, retry & disconnect sequences

· JTAG support

· Interrupt generation

· Bus parking capability

· Latency timer

· Handles address and data stepping in target mode

The following features are not supported by CLPCI

· Subtractive decoding

· Special cycle generation in initiator mode

· Configuration cycles generation in initiator mode

· Memory read line and Memory read multiple commands

· Memory write and invalidate command

· Locking

The verification environment should be able to test the feature set of CLPCI and also for conformance to PCI specification.

2 Target Verification Environment

In the first phase, a target verification environment with the following minimum capabilities will be developed.

1. The environment should mimic the initiator behavior in making the transactions on the PCI bus.

2. The environment should be able to make writes and reads to the configuration register space in the core. Each test will have at least some configuration reads and writes as a part of the test sequence. Registers will have to be written and read at proper instants to verify the behavior of the device.

3. It should be capable of making single/burst reads and writes to the target memory or I/O space. It should be possible to write to any address and with any byte enable combination.

4. It should also give the parity in case of writes being done into the target. There should be provision for introducing errors in the parity at known cycles.

5. It should mimic the application device interface. This involves responding by giving the data in read cycles and taking in the data and writing to files the received data.

6. It should be able to read the data to be transferred from text files both at the application and PCI interface.

7. There should be provision for creating error conditions for protocol verification.

8. The results of tests should be written to files.

Each test module will have an instance of the core under test. Sequences of tasks that drive the inputs and monitor the outputs of the instanced core form a testcase. The basic tasks can be developed by the description outlined above. Suitable combination of these tasks could be used to verify all the features of the core. Special tasks may be needed to verify the behavior in some of the corner cases checking for protocol compliance.

2.1.1 Target mode tests

2.1.1.1 Configuration tests

Test bench performs configuration cycles. All the registers will be read and all the write able registers are written and read back. In each register it has to be made sure that the read only registers are behave that way. The following set of tests is recommended.

1. Configuration read of all registers at reset. Compare with the required values at reset

2. Read and write Vendor ID register

3. Read and write Device ID register

4. Read and write command register

5. Read and write status register

6. Read and write revision ID register

7. Read and write class code register

8. Read and write the latency timer register

9. Read and write Memory base address registers

10. Read and write I/O base address register

11. Read and write Interrupt register

12. Read and write at an unimplemented register address. Reads should return zero and writes should end normally without writing any value.

13. Each byte is separately accessible with the Byte enables

2.1.1.2 Data transfer tests

These tests are used to check for the validity of the data in data transfers. No specific error conditions will be checked. These tests will have to be repeated with different byte enables. The byte enables can be even randomly generated.

The data being transferred is valid only at clock edges when both IRDY (generated by the test bench) and TRDY (generated by the core) are asserted.

1. Address selection and rejection

Test bench configures the base address registers of the core. It then puts invalid addresses on the PCI bus issuing valid commands. Test bench looks for DEVSEL_N indication from the core. Since an invalid address has been given DEVSEL_N should not appear even after six clock cycles. This validates address rejection. Next a valid address is given and it is checked if the DEVSEL_N is asserted within six clock cycles.

2. Data validity in 32 bit memory writes (single and burst)

Test bench initiates a memory transfer. Write cycles are performed. When the core transfers the data written in on to the application interface, the test bench collects the data and compares against the data written out at the PCI interface. If any mismatch is found, it will flag an error.

All the following data validity tests run similar to this.

3. Data validity in 32 bit memory reads (single and burst)

4. Data validity in 32 bit memory writes (single and burst) with 64 bit addressing

5. Data validity 32 in bit memory reads (single and burst) with 64 bit addressing

6. Data validity in 64 bit memory writes (single and burst)

7. Data validity in 64 bit memory reads (single and burst)

8. Data validity in 64 bit memory writes (single and burst) with 64 bit addressing

9. Data validity in 64 bit memory reads (single and burst) with 64 bit addressing

10. Data validity in I/O writes

11. Data validity in I/O writes

12. Target for address stepping transfers

The test bench starts a data transfer with address stepping. The target, by design should look at only the FRAME_N signal for the indication of a new address phase. The transfer should progress as if there was no address stepping.

13. Target for data stepping transfers

The test bench does a write transaction on the core. The data is stepped while keeping IRDY_N de-asserted. A bunch of data is written with IRDY_N de-assertions and data stepping. The test bench compares the data transferred on the application interface to the data written at the PCI bus with stepping. If any mismatch is found, an error will be flagged.

2.1.1.3 Protocol compliance tests

The following list is a set of features the core should have to be compliant to PCI specification. Simple description of the tests is given here.

1. All sustained tri-state (TRDY_N, STOP_N, DEVSEL_N) signals are driven high for a cycle before being tri-stated

This can be a part of all data transfer tests. These signals should be monitored each cycle at the end of the cycle. The last two transitions on these signals should be to ‘1’ ad then to ‘Z’. If not, the tests will flag an error.

2. Reserved commands are not aliased to any other command

Reserved commands are issued from the test bench. The bus is monitored for a few cycles to make sure the target does not respond to the command with a DEVSEL_N indication.

3. Memory read multiple and memory read line commands are aliased to simple memory read command

A read transfer test is repeated with the command being replaced by read-line and read multiple commands. Data validity is checked. The transfers should be completed as memory read command.

4. Write line and invalidate command is aliased to memory write command

A Write transfer test is repeated with the command being replaced by write line and invalidate command. Data validity is checked. The transfer should be completed as memory write command.

5. The core indicates a target abort when unable to complete an I/O access as defined by the byte enables

The test bench issues an I/O command with invalid byte enabled (Ref 3.2.2.1 of PCI spec). The response of the core is monitored for a few cycles. The core should respond with target abort. If an abort condition is not detected on the PCI signals by the test bench, an error will be indicated.

6. Core does not respond to configuration command without accompanying IDSEL and AD[1:0] being “00”

A configuration command is issued from the test bench without asserting IDSEL. DEVSEL_N signal from the signal is monitored for six cycles. If the core issued a DEVSEL_N for this transfer, the test bench should flag this as an error.

The same test should be repeated for AD[1:0] not being “00” too (but asserting IDSEL signal).

7. Core disconnects after the first data phase when a reserved burst order is detected

A read transfer test can be modified for verifying this feature. A condition will be created for insertion of wait states The C/BE signal will be monitored each cycle till the end o

8. Core does not assert TRDY_N during a turn-around cycle on a read

No special test case necessary.

9. Core de-asserts TRDY_N, STOP_N and DEVSEL_N the clock following the completion of the last data phase

This can be included as a part of all data transfer tests. The test bench can recognize the last cycle of a burst transfer. At the next clock cycle it checks the values of these signals and if any of them is not found high, generates

10. Core does not respond to special cycles

A special cycle command is issued from the test bench with a valid target memory or I/O address. The bus is monitored for six cycles to make sure the target does not respond to the command with DEVSEL_N even through there is address match.

11. Core always drives PAR within one cycle of driving data The parity is even parity on AD and C/BE lines

A read transfer is started from the test bench. The test bench is giving the data from the application interface to the core from which it can compute the expected parity. If there is any difference between the expected parity and received parity in a valid parity window, en error will be indicated by the test bench. The test should be repeated for 64-bit data path as well.

12. Address parity error detection and generation of SERR

The test bench makes a configuration write to the core to enable the issue of SERR indication. Then it starts a valid write transfer to the core. After a few cycles, it inserts a wrong parity just for one cycle. SERR pin is monitored in the next 2 cycles to see the response of the device to address parity errors. It flags an error if the error indication was not received 2 clock cycles after the error was introduced. If found high, it makes another configuration transaction to check if the signaled system error bit has been set in the status register.

The same test is repeated in a dual address cycle with a wrong parity indicated for the second address phase.

13. Parity error detection with initiator writes and PERR indication to initiator with the register settings

Test bench makes a configuration transfer to enable the PERR indication. Then it starts a valid write transfers to the core. After a few correct parity transfers, it inserts an error in the parity bit. Then it monitors the PERR pin to see if the core is flagging the error after two clock cycles. Then it reads the status register to see if the corresponding bits are set.

14. PERR is not reported until the data phase is over

Same as 15 & 16.

15. Core signals a disconnect when the burst crosses its resource boundary (should be implemented by the application)

Test bench starts a burst memory transfer near the end of the memory boundary. When the address moves across the boundary, test bench indicates a do_disconnect from the application interface side. This should result in a disconnect on the PCI bus. The test bench flags an error if it does not get a disconnect.

16. Core de-asserts STOP_N the cycle immediately following FRAME_N being de-asserted

17. Once STOP_N is asserted, it is not de-asserted till FRAME_N is de-asserted

The above two can be included in one test. Test bench creates a condition which causes STOP_N to be asserted (A disconnect condition, for example). Once the STOP_N is asserted its value is polled for a few cycles before de-asserting FRAME_N. The state of STOP_N is checked for a few more cycles after de-assertion also. If STOP_N does not stay asserted till FRAME_N is de-asserted, or if it stays asserted one cycle after FRAME_N is de-asserted, an error will be indicated.

18. Core asserts DEVSEL_N before any asserting any other signal

This can be included in all data transfer tests. While the test bench has started a transfer and waiting for DEVSEL_N, it can check for TRDY_N and STOP_N also.

If any of them go off from their tri-state value before DEVSEL_N is found asserted, an error should be indicated.

19. Once DEVSEL_N is asserted, it is never de-asserted till the end of transactions except during target aborts

One of the data transfer tests can be modified to test this feature. DEVSEL_N signal is monitored at every cycle during the transfer. In case it is de-asserted and asserted any time during the transfer, the test bench should flag an error.

20. Core completes the initial data phase within 16 clocks

The test bench starts a read transfer on the core. However when the core asserts the

O_tgt_do_rd_xfer, it delays responding in providing the data on the application interface. The test will be repeated with different delays. When the application data is available, the core should put the data out on the PCI within 16 clock cycles. If not it should issue a retry (?). Test bench polls the PCI bus for the first data transfer each time. A comparison will be made as to when the data was available on the application interface and when it was passed on to the PCI side or when a retry was indicated. This will help in fine tuning the latency counter if need be.

21. Core de-asserts TRDY before signaling a target abort

22. Core does not continue with a transfer once STOP is indicated

23. Core does not respond to reserved encoding

24. AD lines are driven to stable values at each address and data phase

25. The C/BE output buffers remain enabled from the first clock of the data phase to the end of transaction.

26. Back to back transfers

27. wait state inserted in the address phase

Done as address stepping test.

28. Wait state inserted in the first data phase

29. Wait state inserted in the second data phase

30. Wait state inserted in the third data phase

Check why and how these tests have to be performed.

31. Initiator max initial latency (8 wait states before asserting IRDY)

32. Once TRDY is asserted, it does not change till the end of the data phase

33. Once TRDY is asserted it does not change DEVSEL_N till the end of the data phase

34. Once TRDY is asserted it does not change STOP till the end of the data phase

35. Once STOP is asserted, it does not change STOP till the end of the data phase

36. Once STOP is asserted, it does not change TRDY till the end of the data phase

37. Once STOP is asserted, it does not change DEVSEL_N till the end of the data phase

38. A transfer takes place only when both IRDY and TRDY are asserted at the rising edge of PCI clock

This will be verified by all data transfer tests. No special test required.

39. TRDY always indicates the presence of valid data in read cycles

This will be verified by all data transfer tests. No special test required.

Miscellaneous tests:

1. Reset sequence test

Check what all needs to be done with this consulting the PCI spec. Including what needs to be done for ACK64.

2. Issue of target abort

The test bench starts transfer to the core. It issues an I_abort_from_app indication from the application side. It checks the values of DEVSEL_N, STOP and TRDY in the following few cycles to verify if a target abort indication was indicated on these signals. Then it does a configuration transaction to read the register bit corresponding to issue of target abort.

3. Issue of disconnect sequences

The test bench starts a write transfer to the core. While the transfers are going on, it asserts I_disc_from_app signal indicating a disconnect request. The target takes this request and issues a disconnect on the PCI bus. Depending on the current condition of IRDY, TRDY and DEVSEL_N, it could be a A,B or C type of disconnect.

4. Issue of back _end_busy

The test bench starts awrite transfer to the core. Before first data transfer it issues

I_back_end_busy. Core responds by asserting STOP_N and deasserting TRDY_N

 (retry indication).

5. IRDY_N and TRDY_N de-assertion in between a multi data phase transfer

The test bench delays responding on the application interface during a multi phase write transfer thus making the core de-assert TRDY. The test bench also de-asserts IRDY (which is under its control) in between. After the completion of the writes, the burst read is performed to the same address and the data integrity is checked in the test bench.

20. Interrupt tests

 Passing of interrupt from application side to the bus

The test bench assets the interrupt request from the application side and the INTA pin of the core is watched.

3 Initiator Verification Environment

3.1.1 Initiator mode tests

The test bench acts like a pseudo target. It asserts the target signals on the PCI bus. However it is not a complete PCI bus functional model.

1. Bus parking:

Test bench issues GNT to the core in the absence of a request. The values of AD & CBE are checked after 2 cycles. PAR and PAR64 will be checked one cycle later.

2. Single phase read/write Transfers

Test bench issues a single-phase transfer request on the application side. Test bench also emulates the behavior of target by asserting the DEVSEL_N and IRDY. The transactions will be verified by watching the waveforms and monitoring the data in the test bench.

3. Multi phase read/write Transfers

Test bench issues a multi-phase transfer request on the application side. Test bench also emulates the behavior of target by asserting the DEVSEL_N and IRDY. The transactions will be verified by watching the waveforms and monitoring the data at the test bench. This test can be run at a later time by making one instance of the core as target and one as the initiator.

4. Multi phase data transfers with IRDY de-assertion in between

Test bench issues a multi phase write transfer. While the transfer is going on, the test bench stops writing into to core for a while before making an end of transfer indication. This creates a buffer empty condition resulting in de-assertion of IRDY.

5. Multi phase data transfers with TRDY de-assertion in between

Test bench issues a multi phase write transfer. While the transfer is going on, the test bench takes off the TRDY indication for a few cycles. The effect of this on the ongoing transfers is observed on waveforms.

6. Multi phase data transfers with IRDY and TRDY de-assertion in between

This is a combination or 4 & 5.

7. Proper completion of transfers when GNT is de-asserted at the same time as frame being asserted

Test bench requests a multi data phase write transfer from the application interface. It gives a GNT to the request on PCI interface, but takes it at the same cycle when FRAME is asserted. The test bench emulates target behavior by asserting DEVSEL_N and TRDY indications. The transactions on PCI bus are watched on waveforms for proper completion of the transfers.

8. Proper completion of a transfer with target disconnect A sequence

Test bench initiates a multi data phase transfer from the application interface. When the transfers are going on, it indicates a disconnect A on the PCI bus signals. The response of the core in the following cycles is checked.

9. Proper completion of a transfer with target disconnect B sequence

Similar to 8

10. Proper completion of a transfer with target disconnect C sequence

Similar to 8

11. Proper completion of a transfer with target retry and the transfer repeated

Test bench initiates a transfer by indicating a request from the application interface. It also issues a retry indication on the PCI interface. The response can be watched on the waveforms as well as monitoring the data in the test bench.

12. Proper completion of a transfer with target abort sequence.

Test bench starts a transfer by placing a request from the application side. Once the request is issued on the PCI bus, it issues a target abort indication. The response will be watched by waveforms as well as monitoring data in the test bench. Then it

does a configuration transaction to read the register bit corresponding to reception of

target abort.

13. Detection of parity error with target reads and proper register bit setting

Initially the core is configured to detect and report parity errors by writing into the registers. Then the test bench issues a read request from the application interface. Core puts this request on the bus and gets grant. The test bench supplies the read data and parity. Error is introduced in the parity bit and the response of the core will be watched.

14. Sending proper parity bit & detection of PERR when the parity error is introduced by the initiator itself

The core is configured to detect and report parity errors. Transfers are initiated by asserting a request form the application side. Test bench asserts PERR deliberately. The response of the core will be watched on waveforms.

15. Normal transfer termination (may not need a special test)

16. Initiator preemption with timer expiry

Test bench initiates a transfer by asserting the application request and continues to provide data even after the expiry of its time slice. However, it removes the GNT. The core has to stop the transfers and indicate it to the application interface. (Indication to be defined)

17. Initiator preemption when GNT is removed before timer expiry

Similar to 16. Test bench removed GNT even before the time slice has expired The core has to continue with transfers, till its timer expires and then stop. Watch on waveforms.

18. GNT still asserted after time slice expired, there is still data for transfer

Test bench initiates PCI transfer cycles by asserting the request from the application interface. It keeps GNT asserted even beyond the default time slice. It pumps in data from the application interface beyond the time slice. The transfers should complete normally.

19. Master abort when DEVSEL_N is not asserted within 6 clock cycles

The test bench generates a valid request on the application interface. However, no grant is issued to the core till after 6 clock cycles. The IO_FRAME and IRDY signals and the configuration register bit corresponding to this condition is read to verify if it has been proper

20. Assertion of application request when the bus is parked on the core.

Bus parking sequence is done as in test 1. Test bench puts a request for transfer on the application interface while the grant is already available. The completion of transfers is watched on waveforms.

21. FRAME_N & IRDY_N are to be driven high for one cycle before being tristated.

22. Once IRDY_N is asserted it never changes IRDY_N until the current data phase completes.

23. Core never uses reserved burst ordering (AD[1:0]=”01” or AD[1:0]=”11”).

Value driven onto AD bus is controlled by user interface.

24. Core never deasserts FRAME_N unless IRDY_N is asserted or will be asserted.

25. Once core deasserts FRAME_N it never asserts the FRAME_N during the same transaction .

26. Core never terminates with master abort once target has asserted DEVSEL_N.

27. Core never signals master abort earlier than 5 clocks after FRAME_N was first sampled asserted.

28. Core always repeats an access exactly as the original when terminated by retry.

29. Core never starts cycle unless GNT_N is asserted.

30. Core always drive CBE and AD with in eight clocks of GNT_N assertion when bus is idle.

31. Core always asserts IRDY_N with in 8 clocks on all data phases.

32. Core always drives PAR and PAR64 with in one clock of CBE and AD being driven.

33. Core always drives the PAR (PAR64) and such that number of “1”s on AD[31:0] , CBE[3:0] and PAR(AD[63:32] , CBE[7:4] and PAR64) equal an even number.

34. Core always drives PERR_N (when enabled) active two clocks after data when data parity error is detected.

35. Core always holds FRAME_N asserted for cycle following dual command.

4 CLPCI verification environment

Level_1:

 CLPCI is configured to act as target:

 All the tests (data transfer and compliance tests) for the target verification

 (section 2.1.1 – Target mode tests) are conducted for CLPCI core as target.

 CLPCI is configured to act as initiator:

 All the tests (data transfer and compliance tests) for the initiator verification

 (section 3.1.1 – Initiator mode tests) are conducted for CLPCI core as initiator.

Level_2:
 Here 2 instances of CLPCI core is created in the same test bench. One is

 configured to act as an initiator & the other as target.

 Test bench is acting as the arbiter giving GNT in response to the initiator REQ. It

 also mimic as the application side for both initiator module & target module.

 All data transfer and compliance tests are conducted here.

 Data transfer tests: -
 The following set is to be repeated for both reads and writes, with the core being

 the initiator as well as target (Total 24 tests).

 Burst transfers are to be tested with different burst length & with different byte

 enables.

1. 32 bit initiator to 32 bit target transfers

2. 32 bit initiator to 64 bit target transfers in dual address mode

3. 64 bit initiator to 64 bit data target transfers

4. 64 bit initiator to 64 bit target transfers

5. 32 bit initiator to 32-bit target transfer, but address path is 64 bits

6. 64-bit initiator to 64 bit target transfers, but address path is 32 bits

 Protocol Compliance & other tests: -

 All protocol compliance tests are to be conducted at this level also.

 CLPCI target device:

 1.All sustained tri-state (TRDY_N, STOP_N, DEVSEL_N) signals are driven high

 for a cycle before being tri-stated.

 This can be a part of all data transfer tests. These signals should be monitored

 each cycle at the end of the cycle. The last two transitions on these signals

 should be to ‘1’ and then to ‘Z’. If not, the tests will flag an error.

 2. Core does not respond to configuration command without accompanying

 IDSEL and AD[1:0] being “00”

 A configuration command is issued from the test bench without asserting

 IDSEL. DEVSEL_N signal from the signal is monitored for six cycles. If the

 core issued a DEVSEL_N for this transfer, the test bench should flag this as an

 error.

 The same test should be repeated for AD[1:0] not being “00” too (but asserting

 IDSEL signal).

 4. Core does not assert TRDY_N during a turn-around cycle on a read.

 5. Core de-asserts TRDY_N, STOP_N and DEVSEL_N the clock following the

 completion of the last data phase.

 This can be included as a part of all data transfer tests.

 6. Core always drives PAR within one cycle of driving data. The parity is even

 parity on AD and C/BE lines

 7. Issue of target abort

 The test bench issues an I_abort_from_app indication from the application side.

 Check for the values of DEVSEL_N, STOP and TRDY in the following few

 cycles to verify if a target abort indication was indicated on these signals. Then it

 does a configuration transaction to read the register bit corresponding to issue of

 target abort.

 8. Issue of disconnect sequences

 The test bench asserts I_disc_from_app signal indicating a disconnect request.

 The target takes this request and issues a disconnect on the PCI bus. Depending

 on the current condition of IRDY, TRDY and DEVSEL_N, it could be a A,B or

 C type of disconnect.

 9. Issue of back _end_busy

 The test bench issues I_back_end_busy from application side before the first

 data phase.Core responds by asserting STOP_N , deasserting TRDY_N

 and asserting FRAME_N (retry indication).

 10. Core de-asserts STOP_N the cycle immediately following FRAME_N being

 deasserted

 11. Once STOP_N is asserted, it is not de-asserted till FRAME_N is de-asserted

 12. Once DEVSEL_N is asserted, it is never de-asserted till the end of transactions

 except during target aborts.

 13. Core does not continue with a transfer once STOP is indicated.

 14. AD lines are driven to stable values at each address and data phase.

 15. The C/BE output buffers remain enabled from the first clock of the data phase

 to the end of the last data phase.

 16. Once TRDY is asserted, it does not change till the end of the data phase

 17. Once TRDY is asserted it does not change DEVSEL_N till the end of the data

 phase

 18. Once TRDY is asserted it does not change STOP till the end of the data phase

 19. Once STOP is asserted, it does not change STOP till the end of the data phase

 20. Once STOP is asserted, it does not change TRDY till the end of the data phase

 21. Once STOP is asserted, it is not change DEVSEL_N till the end of the data

 phase

 22. A transfer takes place only when both IRDY and TRDY are asserted at the

 rising edge of PCI clock

 This will be verified by all data transfer tests. No special test required.

 CLPCI initiator device:

1. Once IRDY_N is asserted it never changes FRAME_N until the current data

 phase completes.

2. FRAME_N & IRDY_N are to be driven high for one cycle before being tristated.

3. Once IRDY_N is asserted it never changes IRDY_N until the current data

phase completes.

4. Core never uses reserved burst ordering (AD [1:0]=”01” or AD [1:0]=”11”).

 Value driven onto AD bus is controlled by user interface.

5. Core never deasserts FRAME_N unless IRDY_N is asserted or will be asserted.

6. Once core deasserts FRAME_N it never asserts the FRAME_N during the same transaction .

7. Core never terminates with master abort once target has asserted DEVSEL_N.

8. Core never signals master abort earlier than 5 clocks after FRAME_N was first sampled asserted.

9. Core always repeats an access exactly as the original when terminated by retry.

10. Core never starts cycle unless GNT_N is asserted.

11. Core always drive CBE and AD with in eight clocks of GNT_N assertion when bus is idle.

12. Core always asserts IRDY_N with in 8 clocks on all data phases.

13. Core always drives PAR and PAR64 with in one clock of CBE and AD being driven.

14. Core always drives the PAR (PAR64) and such that number of “1”s on AD[31:0] , CBE[3:0] and PAR(AD[63:32] , CBE[7:4] and PAR64) equal an even number.

15. Core always drives PERR_N (when enabled) active two clocks after data when data parity error is detected.

16. Core always holds FRAME_N asserted for cycle following dual command.

17. Normal transfer termination.

18. GNT still asserted after time slice expired, there is still data for transfer.

 Test bench initiates PCI transfer cycles by asserting the request from the

 application interface. It keeps GNT asserted even beyond the default time

 slice. It pumps in data from the application interface beyond the time slice. The

 transfers should complete normally.

19. Initiator preemption when GNT is removed before timer expiry.

 Test bench removed GNT even before the time slice has expired

 The core has to continue with transfers, till its timer expires and then stop.

20. Initiator preemption with timer expiry

 Test bench initiates a transfer by asserting the application request and

 continues to provide data even after the expiry of its time slice. However, it

 removes the GNT. The core has to stop the transfers and indicate it to the

 application interface via O_tim_exp_no_gnt.

21. Proper completion of a transfer with target abort.

When target abort sequence comes, FRAME & IRDY are monitored.

The configuration reg. bit corresponding to this condition is also checked.

22. Proper completion of a transfer with target disconnect sequence.

When target disconnect indication comes from the target, check FRAME & IRDY signals coming properly. Also check whether O_disconnect signal to the application is asserting.

23. Master abort when DEVSEL_N is not asserted within 6 clock cycles

 The test bench generates a valid request on the application interface. However,

 no grant is issued to the core till after 6 clock cycles. The IO_FRAME and

 IRDY signals and the configuration register bit corresponding to this condition

 is read to verify if it has been proper.

5 I/O Description

The following table gives the I/O description of CLPCI core. All active low signals have names ending in _n. Tri-state signals are indicates as (ts). Sustained tri-state signals are indicated as (sts). Inputs to the core have names starting with I_. Outputs of the core have names starting from O_. Bi-directional signals start with prefix IO_. Signals that have relevance only in the initiator mode have a string “itr” in their names. Signals that have meaning only in target mode have a string “tgt” in their names.

Table 1: PCI side I/Os

Name
Type
Description

I_CLK
I
This is the PCI clock. All activities on the PCI bus are synchronized to this clock. The frequency of this clock may be anywhere between 0 MHz and 33 MHz in 33 MHz systems and anywhere between 0 MHz and 66 MHz in 66 MHz systems.

I_RST_n
I
When asserted, all the PCI configuration registers and state machines and the output drivers are brought to an initialized state. This signal can be asserted asynchronous to the clock signal.

IO_AD[31:0]
I/O(ts)
Lower four bytes of multiplexed address/data bus. Contains the start address for the transaction in the address phase and the data in the data phase of a PCI transfer.

IO_AD[63:32]
I/O(ts)
Upper four bytes of multiplexed address/data bus. This has meaning only when the core is operating in 64-bit mode.

IO_CBE_n[3:0]
I/O(ts)
These lines contain the PCI command during the address phase and the Byte enables during the data phase.

IO_CBE_n[7:4]
I/O(ts)
This contains the upper four-byte enables when the 64-bit transfers are being performed.

O_REQ_n
O
When CLPCI wishes to gain control over the PCI bus, this signal is asserted.

I_GNT_n
I
When this signal is asserted, it indicates that the request from the CLPCI for control of PCI bus has been granted and it can take control over the bus after the current transactions on the bus are completed.

I_IDSEL
I
When asserted, indicates to CLPCI that it is the current target for a configuration cycle.

I_M66EN
I
When asserted, indicates that the PCI bus is 66 MHz capable.

IO_PAR
I/O(ts)
Even parity across IO_AD[31:0] and IO_CBE_N[3:0]. Parity is always valid for the transfer that occurred in the previous clock cycle.

IO_PAR64
I/O(t/s)
Even parity across IO_AD[63:32] and IO_CBE_N[7:4]. This signal has meaning only with 64 bit transfers. Parity is always valid for the transfer that occurred in the previous clock cycle.

IO_FRAME_n
I/O(sts)
CLPCI asserts this signal when it is acting as an initiator. Assertion indicates the beginning of a transfer. This signal is de-asserted when only one more data phase remains in the transfer. When CLPCI is given grant of the bus, it polls the bus for idle condition (IO_FRAME_n and IO_IRDY_n being de-asserted) and then asserts the IO_FRAME_n.

IO_REQ64_n
I/O
This signal is asserted by a 64-bit master to indicate it would like to perform 64-bit data transfers. This signal has the same timing and duration as IO_FRAME_n signal.

IO_IRDY_n
I/O(sts)
CLPCI drives this signal only when acting as an initiator. During a write transfer, the assertion of this signal indicates that the initiator is driving valid data to the bus. During a read, it indicates that the initiator is ready to accept the data from the target. A data phase is completed on any clock when both IO_IRDY_n and IO_TRDY_n are asserted.

IO_TRDY_n
I/O(sts)
CLPCI drives this signal only when acting as a target. It indicates that CLPCI is ready to complete the current data transfer as a target. During a read, it indicates that CLPCI is driving valid data onto the IO_AD bus. During write cycles it means that it is ready to accept data to be written into it. A data phase is completed on any clock when both IO_IRDY_n and IO_TRDY_n are asserted.

IO_STOP_n
I/O(sts)
CLPCI drives this signal when acting as a target to request for termination the transaction going on. When acting as an initiator, it monitors this signal to perform an abort sequence.

IO_DEVSEL_N_n
I/O(sts)
When CLPCI is acting as a target, it drives this signal when it decodes the address and finds a match. When acting as an in initiator, it monitors this signal and if no target has claimed the transaction it has started within six clock cycles a master abort sequence is performed.

IO_ACK64_n
I/O
This is asserted by a target which can support 64-bit transfers in response to IO_REQ64_n. This signal has the same timing and duration as IO_DEVSEL_N_n. In the absence of IO_REQ64_n, this signal stays de-asserted.

IO_PERR_n
I/O(sts)
Indicates a data parity error detected condition except for special cycles. This is driven by the initiator when read cycles are performed and by the target when write cycles are being performed.

O_SERR_n
I/O
Indicates address parity errors or data parity errors on special cycles (not supported by CLPCI). Any other serious system error can be passed off to the PCI bus on through this indication.

O_INTA_n
O
Interrupt indication to the host processor

Table 2:Application side I/Os

The following I/Os are valid both in initiator as well as target modes.

Name
Type
Description

I_appl_clk

All signals in the application side are synchronised to this clock.

I_ad [63:0]
I
This bus holds the data to be written into a target (in the initiator mode) or data being read out from the current master (in the target mode). Upper 4 bytes are valid only for 64-bit transfers.This holds the address to be given to the target in initiator mode.

I_data_val_lo
I
This signal qualifies the lower four bytes of data on I_data bus (For initiator writes or target reads).

I_data_val_hi
I
This signal qualifies the upper four bytes of data on I_data bus. This will be asserted only for 64 bit transfers (For initiator writes or target reads).

I_cbe[3:0]
I
This is the multiplexed command request type/byte enable for the data on I_data bus for the transfer required. CLPCI does not initiate any configuration commands on other devices on PCI bus.

I_cbe[7:4]
I
This is the byte enable for the upper four bytes of data when 64-bit transfers are being performed.

I_intr
I
When asserted, indicates that the application wishes to send an interrupt to the host processor on the PCI bus.

O_data[63:0]
O
This bus holds the data for transfer from the core to the application when the application is initiating a read transaction or is being written into in the target mode.

O_data_val_lo
O
When this signal is asserted, indicates that the data on O_data[31:0] is valid.

O_data_val_hi
O
When this signal is asserted, indicates that the data on O_data[63:32] is valid. This will be used only when 64 bit transfers are allowed with the application.

O_cbe[7:0]
O
This contains the byte enables for the data on O_data bus. Only the lower nibble is valid with 32 bit transfers.

The following I/Os are valid only in target mode.

Name
Type
Description

I_capable64
I
When asserted indicates that the application has a 64 bit data path.

I_disc_from_app
I
When this signal is asserted, indicates that the application wants to terminate the transactions it is undergoing as a target. This will result in a disconnect sequence being performed on the PCI bus.

I_tgt_wr_nxt
I
Indicates to the core that the application can accept the data from the core that is written by the current initiator. This signal is asserted in response to O_tgt_wr_data_avail indication from the core. The data on O_data will be updated at rising clock edges when this signal is sampled high.

I_abort_from_app
I
This is an indication from the application to the core for a target abort to be issued to the initiator.

I_back_end_busy
I
When transfers of previous data are going on in the application side ,this will be asserted. This will result in a rerty sequence on the PCI side

O_tgt_wr_data_avail
O
Indicates that data written from an initiator is available in the core to be transferred to the application.

O_addr[63:0]
O
This bus holds the address to/from which data should be transferred during target mode

O_tgt_do_rd_transfer
O
Indicates to the application that there is space available for data to be written into the buffer in the core. This signal gets asserted when the application is in target mode and a read transfer is going on and the internal buffer is not full. It gets de-asserted when the transfer is complete or there is no space to be written.

The core accepts a data from the application when this signal is asserted, and the validity of the data is indicated by the application.

The following I/Os are valid only in the initiator mode.

Name
Type
Description

I_itr_a2c_req32
I
When asserted, indicates that the application wants to initiate a transfer with 32 bit data path.

I_itr_a2c_req64
I
When asserted, indicates that the application wishes to initiate a transfer with 64 bit data path.

I_adrr_val_lo
I
This signal qualifies the lower four bytes of address on I_adrs bus during initiator reads or writes.

I_adrr_val_hi
I
This signal qualifies the upper four bytes of address on I_adrs bus during initiator reads or writes. This will be asserted only when memory transfers requiring 64-bit addressing are being done.

I_itr_end_transfer
I
This indication indicates that the application wants to end the current transfer it has initiated. During read transfers, this cycle should be asserted during the cycle at the end of which IO_FRAME_n is to be de-asserted. For write transfers, this will be given with last but one data for burst transfers & with the data for single transfer.

I_single_wr_xfer
I
This indicates that application wants a single write transfer. When application is requesting for a single write transfer, this should be asserted with the data.

I_itr_rd_nxt
I
When asserted, indicates to the core to place data from the target on the O_data bus. This signal gets asserted in response to O_itr_rd_data_avail indication from the core. The data on O_data will be updated at rising clock edges when this signal is sampled high.

O_64bit_mode
O
When asserted, indicates to the application that 64-bit transactions are being carried out as per its request. When the application has requested a 64-bit wide transfer, it has to check this signal to see if it has got a grant for 64-bit wide data path or not. This signal is valid when the core is operating as an initiator.

O_itr_rd_data_avail
O
Indicates that read data from the target is available in the core for transfer to the application.

O_itr_do_wr_transfer
O
Indicates to the application that there is space available for data to be written into the buffer in the core. This signal gets asserted when a write request has been latched from the application and the internal buffer is not full. It gets de-asserted when the transfer is complete or there is no space to be written. The I_data bus should get updated in clock cycles following the edge when this signal is asserted, during the write transfers as initiator.

O _disconnect
O
Indicates that disconnect was issued from the target of the current transaction. This is valid only when the application is acting as the initiator.

O_tim_exp_no_gnt
O
When latency timer expired & there is no GNT from the arbiter, this will be asserted.

O_error
O
Indicates an error condition from the PCI side. A variety of conditions can give this error

PAGE
15
Revision 1.0
Chiplogic Company Confidential

