QUASARES (QUASARS )

modelo=5

         

Objetos quase desconhecidos do gde público e mesmo da maioria dos curiosos em astronomia, quasars are a class of compact objects no larger than stars but packing the energy output of hundreds or thousands of galaxies ! Quasars hasnt the energy of "only" one or 10 galaxies, but  of hundreds or thousands of galaxies ! 

A QUASAR IN A NEARBY RADIO GALAXY has been discovered using the Hubble Space Telescope. Although the galaxy, Cygnus A, is the most luminous object in the nearby universe, its spectrum (particularly at visible wavelengths) had not hinted at the presence of a quasar. But new ultraviolet observations exhibit broad emission lines characteristic of a quasar, which must lie hidden at the heart of the galaxy. The ultraviolet radiation, arising from magnesium ions in the quasar, is probably being reflected toward Earth by dust surrounding the galaxy. Quasars are a class of compact objects no larger than stars but packing the energy output of hundreds or thousands of galaxies. With a redshift of only 0.057, Cygnus A is closer than all other comparable energy sources. (Robert Antonucci et al., Nature, 22 Sept.)

Quasares liberam mais energia do que 100 galáxias normais juntas.

Encontram-se mais longe da Terra do que qualquer outro objeto conhecido no Universo. E porque eles estão tão longe de nós, a luz que eles emitem leva bilhões de anos para chegar à Terra. A luz continua a mesma, mas ela viaja por um longo tempo até chegar a nós. Quando olhamos um quasar, é como se estivéssemos olhando atrás no tempo. A luz que vemos hoje é como o quasar era há bilhões de anos atrás. Os cientistas acreditam que quando eles estudam quasares eles estão estudando o começo do Universo.

Quasares liberam enormes quantidades de energia. Eles podem ser trilhões de vezes mais brilhantes que o Sol ! Astrônomos acreditam que quasares encontram-se em galáxias que possuem buracos negros em seus centros. Os buracos negros podem fornecer a energia aos quasares. Quasares são tão brilhantes que eles encobrem a luz de todas as outras estrelas da mesma galáxia. A palavra quasar é a abreviação de "quasi-stellar radio source" (fonte quase-estelar de rádio). Quasares emitem ondas de rádio, raios-X, raios gama, raios ultravioleta, e luz visível. A maior parte deles são maiores que o nosso sistema solar !

Quasares

Quasares são objetos extragaláticos muito brilhantes e muito distantes. O nome vem de "Quasi Stellar Radio Sources" e foram detectados primeiramente com rádio telescópios e quando identificados no ótico tinham uma aparência pontual. (parecendo uma estrela). Hoje já foram detectadas galáxias em cujo núcleo estão quasares e a teoria mais aceita é que os quasares são buracos negros com massas de 1 milhão a 1 bilhão de vezes a massa do Sol localizados no núcleo de galáxias ativas.

modelo=5
fotoz=5
z=5
Foto e espectro de um dos quasares mais distantes já descobertos.
Este tem deslocamento para o vermelho (redshift) z=5,0 e foi descoberto pelo Sloan Digital Sky Survey em 1998.

Mais recentemente Daniel Stern (JPL), Hyron Spinrad (Berkeley), Peter Eisenhardt (JPL), Andrew Bunker (Cambridge), Steve Dawson (Berkeley), Adam Stanford (Davis,IGPP) e Richard Elson (Florida) descobriram o quasar RD300 com z=5,5, utilizando o 4m do KPNO, o 5m do Palomar e os 10m dos Kecks.

z=5

O Sloan Digital Sky Survey também encontrou os 2 mais distantes quasares até agora, com z=6,0 e 6,2, que representam o Universo quando este tinha somente 800 milhões de anos.

Movimentos Superluminais

3C219 Montagem da imagem ótica (em azul) com a imagem em rádio (em vermelho) do quasar 3C219, que está a 500 Mpc. Esta imagem a gente só vê em montagens como esta. Enquanto a galáxia toda tem 100 mil anos-luz de diâmetro, os jatos do quasar cobrem 1 milhão de anos-luz !
©

Galáxias             http://astro.if.ufrgs.br/galax/

A descoberta das galáxias

Por volta do século XVIII vários astrônomos já haviam observado, entre as estrelas, a presença de corpos extensos e difusos, aos quais denominaram "nebulosas". Hoje sabemos que diferentes tipos de objetos estavam agrupados sob esse termo, a maioria pertencendo à nossa própria Galáxia: nuvens de gás iluminadas por estrelas dentro delas, gás ejectados por estrelas em estágio final de evolução estelar, aglomerados de estrelas. Mas alguns deles - as nebulosas espirais - eram galáxias individuais, como a nossa Via Láctea.

M86 M91 M92
M86=S0                    M91=SBb                          M92=Irr

Immanuel Kant (1724-1804), o grande filósofo alemão, influenciado pelo astrônomo Thomas Wright (1711-1786), foi o primeiro a propor, por volta de 1755, que algumas nebulosas poderiam ser sistemas estelares totalmente comparáveis à nossa Galáxia. Citando Kant: "[A] analogia [das nebulosas] com o sistema estelar em que vivemos... está em perfeita concordância com o conceito de que esses objetos elípticos são simplesmente universos [ilha], em outras palavras, Vias Lácteas ...". Essa idéia ficou conhecida como a "hipótese dos universos-ilha". No entanto, as especulações cosmológicas de Kant não foram bem aceitas na época, de forma que a natureza das nebulosas permaneceu assunto de controvérsia. Até 1908, cerca de 15 000 nebulosas haviam sido catalogadas e descritas. Algumas haviam sido corretamente identificadas como aglomerados estelares, e outras como nebulosas gasosas. A maioria, porém, permanecia com natureza inexplicada. O problema maior era que a distância a elas não era conhecida, portanto não era possível saber se elas pertenciam à nossa Galáxia ou não.

ShapleyShapley CurtisCurtis

Dois dos maiores protagonistas nessa controvérsia foram Harlow Shapley (1885-1972), do Mount Wilson Observatory, e Heber Doust Curtis (1872-1942), do Lick Observatory, ambos nos Estados Unidos. Shapley defendia que as nebulosas espirais eram objetos da nossa Galáxia, e Curtis defendia a idéia oposta, de que eram objetos extragalácticos. A discussão culminou num famoso debate em abril de 1920, frente à Academia Nacional de Ciências. Mas o debate não resolveu a questão.
Hubble Somente em 1923 Edwin Powell Hubble (1889-1953) proporcionou a evidência definitiva para considerar as "nebulosas espirais" como galáxias independentes, ao identificar uma variável Cefeida na "nebulosa" de Andrômeda (M31).

 

 

andromeda  .jpg (77335 bytes)
Foto da maravilhosa Andrômeda, M31, que tem B=3,4, declinação de +41° e está a 2,2 milhões de anos-luz de nós, vr=-300 km/s, z=-0.001. A galáxia NGC 205, sua satélite, está na parte inferior.
 

A partir da relação conhecida entre período e luminosidade das Cefeidas da nossa Galáxia, e do brilho aparente das Cefeidas de Andrômeda, Hubble pôde calcular a distância entre Andrômeda e a Via Láctea, obtendo um valor de 2,2 milhões de anos-luz. Isso situava Andrômeda bem além dos limites da nossa Galáxia, que tem 100 mil anos-luz de diâmetro. Ficou assim provado que Andrômeda era um sistema estelar independente.

Cefeida
Uma cefeida na galáxia IC4182, observada pelo Telescópio Espacial Hubble


Classificação morfológica de galáxias

As galáxias diferem bastante entre si, mas a grande maioria têm formas mais ou menos regulares quando observadas em projeção contra o céu, e se enquadram em duas classes gerais: espirais e elípticas. Algumas galáxias não têm forma definida, e são chamadas irregulares.

Um dos primeiros e mais simples esquemas de classificação de galáxias, que é usado até hoje, foi inventado por Hubble nos anos 1920. O esquema de Hubble consiste de três sequências principais de classificação: elípticas, espirais e espirais barradas. Nesse esquema, as galáxias irregulares formam uma quarta classe de objetos. Classificao
Esquema de Hubble para a classificação de galáxias.

Espirais (S)

As galáxias espirais, quando vistas de frente, apresentam uma clara estrutura espiral. Andrômeda (M31) e a nossa própria Galáxia são espirais típicas. Elas possuem um núcleo, um disco, um halo, e braços espirais. As galáxias espirais apresentam diferenças entre si principalmente quanto ao tamanho do núcleo e ao grau de desenvolvimento dos braços espirais. Assim, elas são subdivididas nas categorias Sa, Sb e Sc, de acordo com o grau de desenvolvimento e enrolamento dos braços espirais e com o tamanho do núcleo comparado com o do disco

a núcleo maior, muitos braços pequenos e bem misturados
b núcleo e braços intermediários
c núcleo menor, poucos braços grandes e bem visíveis

Por exemplo, uma galáxia Sa é uma espiral com núcleo grande e braços espirais pequenos, bem enrolados, de difícil resolução.

espirais
Fotos de galáxias obtidas por Jim Wray, no McDonald Observatory.

Existem algumas galáxias que têm núcleo, disco e halo, mas não têm traços de estrutura espiral. Hubble classificou essas galáxias como S0, e elas são às vezes chamadas lenticulares. As galáxias espirais e lenticulares juntas formam o conjunto das galáxias discoidais.

S0

Mais ou menos metade de todas as galáxias discoidais apresentam uma estrutura em forma de barra atravessando o núcleo. Elas são chamadas barradas e, na classificação de Hubble elas são identificadas pelas iniciais SB. As galáxias barradas também se subdividem nas categoria SB0, SBa, SBb, e SBc. Nas espirais barradas, os braços normalmente partem das extremidades da barra. O fenômeno de formação da barra ainda não é bem compreendido, mas acredita-se que a barra seja a resposta do sistema a um tipo de perturbação gravitacional periódica (como uma galáxia companheira), ou simplesmente a consequência de uma assimetria na distribuição de massa no disco da galáxia. Alguns astrônomos também acreditam que a barra seja pelo menos em parte responsável pela formação da estrutura espiral, assim como por outros fenômenos evolutivos em galáxias.

barradas

Normalmente se observa, nos braços das galáxias espirais, o material interestelar. Ali também estão presentes as nebulosas gasosas, poeira, e estrelas jovens, incluindo as super-gigantes luminosas. Os aglomerados estelares abertos podem ser vistos nos braços das espirais mais próximas e os aglomerados globulares no halo. A população estelar típica das galáxias espirais está formada por estrelas jovens e velhas.

As galáxias espirais têm diâmetros que variam de 20 mil anos-luz até mais de 100 mil anos-luz. Estima-se que suas massas variam de 10 bilhões a 10 trilhões de vezes a massa do Sol. Nossa Galáxia e M31 são ambas espirais grandes e massivas.

M83M83
NGC1365NGC1365
Exemplos de galáxias espirais e espirais barradas.

Elípticas (E)

As galáxias elípticas apresentam forma esférica ou elipsoidal, e não têm estrutura espiral. Têm pouco gás, pouca poeira e poucas estrelas jovens. Elas se parecem ao núcleo e halo das galáxias espirais.

elipticas
As galáxias elípticas são chamadas de En, onde n=10(a-b)/a, sendo a o semi-eixo maior e b o semi-eixo menor.

Hubble subdividiu as elípticas em classes de E0 a E7, de acordo com o seu grau de achatamento. Imagine-se olhando um prato circular de frente: essa é a aparência de uma galáxia E0. Agora vá inclinando o prato de forma que ele pareça cada vez mais elíptico e menos circular: esse achatamento gradativo representa a sequência de E0 a E7. Note que Hubble baseou sua classificação na aparência da galáxia, não na sua verdadeira forma. Por exemplo, uma galáxia E0 tanto pode ser uma elíptica realmente esférica quanto pode ser uma elíptica mais achatada vista de frente, já uma E7 tem que ser uma elíptica achatada vista de perfil. Porém nenhuma elíptica jamais vai aparecer tão achatada quanto uma espiral vista de perfil.

As galáxias elípticas variam muito de tamanho, desde super-gigantes até anãs. As maiores elípticas têm diâmetros de milhões de anos-luz, ao passo que as menores têm somente poucos milhares de anos-luz em diâmetro. As elípticas gigantes, que têm massas de até 10 trilhões de massas solares, são raras, mas as elípticas anãs são o tipo mais comum de galáxias.

M87 A galáxia elíptica gigante M87.


Irregulares (I)

Hubble classificou como galáxias irregulares aquelas que eram privadas de qualquer simetria circular ou rotacional, apresentando uma estrutura caótica ou irregular. Muitas irregulares parecem estar sofrendo atividade de formação estelar relativamente intensa, sua aparência sendo dominada por estrelas jovens brilhantes e nuvens de gás ionizado distribuídas irregularmente. Em contraste, observações na linha de 21 cm, que revela a distribuição do gás hidrogênio, mostra a existência de um disco de gás similar ao das galáxias espirais. As galáxias irregulares também lembram as espirais no seu conteúdo estelar, que inclui estrelas de população I e II (jovens e velhas).

Os dois exemplos mais conhecidos de galáxias irregulares são a Grande e a Pequena Nuvens de Magalhães, as galáxias vizinhas mais próximas da Via Láctea, visíveis a olho nu no Hemisfério Sul, identificadas pelo navegador português Fernão de Magalhães (1480-1521), em 1520. A Grande Nuvem tem uma barra, embora não tenha braços espirais. Aparentemente ela orbita a Via Láctea. Nela está presente o complexo 30 Doradus, um dos maiores e mais luminosos agrupamentos de de gás e estrelas super-gigantes conhecido em qualquer galáxia. A Supernova 1987A ocorreu perto de 30 Doradus. A massa da Grande Nuvem é a do sol multiplicada pelo numero 10 com mais 52 zeros ! (10.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000 !!!!!!!) (10 à 15ª potencia).     E essa Grande Nuvem é 1 coisa insignificante no Universo ! Imagine as maiores galáxias !

SN1987A
A Grande Nuvem de Magalhães, uma galáxia irregular.

A Pequena Nuvem é bastante alongada e menos massiva do que a Grande Nuvem. Aparentemente é o resultado de uma colisão com a Grande Nuvem acontecida há uns 200 milhões de anos atrás.

LMC SMC
Foto das galáxias irregulares Grande Nuvem de Magalhães e Pequena Nuvem de Magalhães, obtidas no Anglo-Australian Observatory.
lmc(1).jpg (14653 bytes)
Detalhe da Grande Nuvem de Magalhães, obtida com o câmara grande angular do Telescópio Espacial Hubble, mostrando as estrelas individuais.

As galáxias elípticas foram formadas de nuvens com baixo momentum angular, enquanto as espirais de nuvens com alto momentum angular. Como a rotação inibe a formação estelar pois dificulta a condensação da nuvem, as estrelas se formam mais lentamente nas galáxias espirais, permitindo que o gás perdure e a formação estelar se estenda até o presente.

Massas de galáxias

Assim como a massa de uma estrela é a sua característica física mais importante, também nas galáxias a massa tem um papel crucial, não apenas em sua evolução como sistemas individuais, mas na evolução do próprio universo. Por exemplo, da quantidade de massa das galáxias depende a densidade do universo, que determina se o universo vai se expandir para sempre ou se um dia irá se contrair.

A melhor maneira de medir a massa é a partir das velocidades das estrelas devido à atração gravitacional entre elas. Em galáxias elípticas, as velocidades medidas são velocidades médias, pois os movimentos das estrelas nesses sistemas têm componentes de mesma magnitude nas três direções, e todas seguem órbitas bastante elípticas.

Massas de galáxias elípticas

eorbits.jpg (26933 bytes)

As massas das galáxias elípticas podem ser determinadas a partir do Teorema do Virial, segundo o qual num sistema estacionário (cujas propriedades não variam no tempo), a soma da energia potencial gravitacional das partículas e o dobro de sua energia cinética, é nula.

Podemos considerar uma galáxia como um sistema estacionário (pois ela não está nem se contraindo nem se expandindo), cujas partículas são as estrelas.

 

Massas de galáxias espirais

As galáxias espirais têm grande parte das estrelas confinadas ao plano do disco, com órbitas quase circulares, e velocidades que dependem da distância ao centro. Veja:

sporbits.jpg (19621 bytes)

Curva de rotação da galáxia espiral NGC3198.
Isto é fantástico !  Estrelas dançando ciranda cirandinha para a Glória d Jesus !

Em galáxias espirais, nas quais o movimento circular das estrelas no disco é dominante sobre o movimento desordenado das estrelas do bojo, a massa pode ser determinada através da curva de rotação, v(R), que é um gráfico da velocidade de rotação em função da distância galactocêntrica. As velocidades de rotação em cada ponto são obtidas medindo o deslocamento Doppler das linhas espectrais.

Assumindo que a maior parte da massa da galáxia está no bojo interno, e que portanto o movimento rotacional das estrelas no disco é determinado pela massa do bojo, podemos determinar essa massa através da igualdade da força gravitacional com a força centrífuga, da mesma maneira como determinamos a massa da nossa Galáxia no capítulo anterior.   Como as partes externas das galáxias são muito fracas, a partir de um certo valor a luminosidade não aumenta mais, mas de acordo com a curva de rotação a massa continua crescendo. Isso significa que uma grande parte da massa das galáxias deve ser não luminosa, e é conhecido como o problema da massa escura.

A formação e evolução das galáxias

Qual a causa de existirem diferentes tipos de galáxia? Quando os primeiros estudos sobre galáxias iniciaram, o fato de as galáxias elípticas terem estrelas em geral mais velhas do que as galáxias espirais enganou os astrônomos fazendo-os pensarem que as diferenças se deviam à evolução, ou seja, "as galáxias quando jovens seriam espirais e mais tarde teriam se tornado elípticas".

Entretanto, se determinarmos as idades das estrelas mais velhas em sistemas espirais e em sistemas elípticos, encontramos que em todos os tipos, essas estrelas são igualmente velhas, em torno de 10 bilhões de anos. Portanto, todas as galáxias que vemos começaram a se formar mais ou menos na mesma época na história do universo, e portanto têm mais ou menos a mesma idade. A diferença é que nas espirais e nas irregulares sobrou gás suficiente para continuar o processo de formação estelar até a época presente.

DeepField
Imagem de longa exposição do telescópio Espacial Hubble, mostrando que todos os tipos de galáxias já eram encontradas no passado remoto.

Uma diferença importante entre elípticas e espirais é a velocidade com que ocorre a formação estelar. Parece que nas elípticas a formação estelar aconteceu de forma mais rápida no início de sua evolução, talvez porque tenham se originado de nuvens protogalácticas mais densas do que as espirais. Da mesma forma, nas regiões centrais das espirais, onde a densidade era maior, a formação estelar foi rápida, mas nos braços se procedeu mais lentamente, de forma que o gás não foi consumido todo de uma vez, e a formação estelar pode continuar.

Outro fator importante é a quantidade de momentum angular (quantidade de rotação) da nuvem de gás primordial: quanto mais momentum angular a nuvem tinha inicialmente, mais achatada será a forma final. Levando isso em conta, as elípticas teriam se formado de nuvens que tinham pouca rotação quando começaram a se contrair, ao passo que as espirais teriam se formado do colapso de nuvens com mais rotação.

Aglomerados de galáxias

Olhando-se fotografias do céu, nota-se facilmente que as galáxias tendem a existir em grupos.

HydraHydra
 

Jan Hendrik Oort (1900-1992) demonstrou que as galáxias não estão distribuídas aleatoriamente no espaço, mas concentram-se em grupos, como o Grupo Local, que contém cerca de 40 galáxias, e grande cúmulos, como o grande cúmulo de Virgem, que contém 2500 galáxias. Oort demonstrou também que o cúmulo de Virgem, movendo-se a 750 km/s, é insuficiente por um fator de 100 para manter o cúmulo gravitacionalmente estável, indicando novamente que a matéria escura deve ser dominante. Recentemente a detecção pela emissão de raio-X dos gás quente no meio entre as galáxias dos cúmulos indica que um terço da matéria originalmente chamada de escura é na verdade gás quente. Mas pelo menos dois terços da matéria escura não pode ser bariônica, ou a quantidade de hélio e deutério do Universo teria que ser diferente da observada, como explicitado no capítulo de Cosmologia.

abell2218
Imagem de lentes gravitacionais no cúmulo Abell 2218, fotografado pelo Telescópio Espacial Hubble.


O Grupo Local

O grupo de galáxias ao qual a Via Láctea pertence chama-se Grupo Local. É um aglomerado pequeno, com cerca de 40 membros, que ocupa um volume de 3 milhões de anos-luz na sua dimensão maior. A Via Láctea e Andrômeda (M31) são de longe os dois membros mais massivos, estando um em cada borda do aglomerado. A terceira galáxia mais luminosa do grupo é outra espiral, M33, que tem 20% da luminosidade da Via Láctea e 13% da luminosidade de Andrômeda. Entre os demais membros tem apenas uma elíptica, M32, satélite de M31, e várias irregulares e galáxias anãs.

As Nuvens de Magalhães (Grande Nuvem de Magalhães e Pequena Nuvem de Magalhães), galáxias irregulares satélites da nossa Galáxia , também fazem parte desse grupo. A Grande Nuvem de Magalhães, localizada a 150 mil anos-luz (46 kpc) da Via Láctea, era até 1994 considerada a galáxia mais próxima2. Em 2004 foram descobertas várias galáxias anãs na região do Grupo Local, entre as quais uma localizada a apenas 24 kpc de distãncia, na direção do centro galáctico, em Sagitário. Essa é atualmente a galáxia mais próxima, e só não foi detectada antes devido a estar numa região de grande extinção e ter brilho superficial muito baixo.

No total, o grupo local contém 3 galáxias espirais, 1 elíptica, 14 galáxias irregulares de diferentes tamanhos, e 21 anãs elípticas. A maioria das galáxias se encontram orbitando a Via Láctea ou Andrômeda, dando uma aparência binária ao Grupo Local.

Outros aglomerados de galáxias

Virgo
Fotografia de parte do cúmulo de Virgem, obtida por David Malin com o UK Schmidt Telescope do ©Anglo-Australian Telescope. O cúmulo contém mais de 2500 galáxias e cobre mais de 5° no céu. A galáxia elíptica brilhante M84 é a que está logo acima do centro e M86 é a elíptica brilhante à direita.

Outros aglomerados de galáxias variam de grupos pequenos a aglomerados compactos. O aglomerado de Fornax, relativamente próximo, apresenta um conjunto variado de tipos de galáxias, embora tenha poucos membros:

Fornax
Imagem do centro do aglomerado de galáxias do Fornax, a 15 Mpc de distância e RA=3h 36m, DEC=-35°37m. No centro está a galáxia elíptica tipo E1 NGC 1399. Abaixo desta a E1 NGC 1404 e a esquerda desta a irregular NGC 1427.
 

O grande aglomerado de Coma cobre 20 milhões de anos-luz no espaço (2 graus de diâmetro) e contém milhares de membros. O aglomerado de Virgem tem no centro as galáxias elípticas gigantes M84 e M86, situadas a uma distância de 34 milhões de anos-luz. Ele também cobre 20 milhões de anos-luz no espaço e é um dos mais espetaculares do céu. Suas quatro galáxias mais brilhantes são galáxias elípticas gigantes, embora a maior parte das galáxias membros visíveis sejam espirais.

Coma
Aglomerado de Coma: quase tudo q se vê nesta foto.

O aglomerado de Virgem é tão massivo e tão próximo que atrai o Grupo Local, fazendo com que nos movamos na sua direção. A galáxia elíptica gigante M87, também do aglomerado, contém um buraco-negro massivo em seu centro.

M87Jato galáxia elíptica gigante M87, do aglomerado de Virgem, a 50 milhões de anos-luz da Terra, fotografada pelo Hubble Space Telescope, muito distante mesmo para o telescópio  espacial Hubble para q se possa ver estrelas individuais. As formas puntuais são cúmulos estelares. O jato de elétrons relativísticos é acelerado pelo buraco negro massivo central.

O aglomerado de galáxias de Hydra. hydra.epsf

A denominação M das galáxias vem de Charles Messier (1730-1817), um caçador de cometas, que em 1781 registrou a posição de 103 objetos extensos (nebulosas) para não confundí-los com cometas.

Superaglomerados

Depois de descobrir que as galáxias faziam partes de aglomerados ou cúmulos de galáxias, os astrônomos se perguntaram se existiam estruturas ainda maiores no Universo. Em 1953, o astrônomo francês Gérard de Vaucouleurs (1918-1995) demonstrou que os aglomerados de galáxias também formam superaglomerados.

O superaglomerado mais bem estudado é o Supercúmulo Local, porque fazemos parte dele. Ele tem um diâmetro de aproximadamente 100 milhões de anos-luz e aproximadamente uma massa de cerca de 10.000.000.000.000.000 (10 quatrilhões) de massas solares, contendo o Grupo Local de galáxias, e o cúmulo de Virgem.

Entre estes superaglomerados observam-se grandes regiões sem galáxias onde foram detectadas nuvens de hidrogênio neutro. Margaret J. Geller (1947-) e John Peter Huchra (1948-), do Center for Astrophysics da Universidade de Harvard, e os brasileiros Luiz Alberto Nicolaci da Costa (1950-) e Paulo Sergio de Souza Pellegrini (1949-), do Observatório Nacional, têm estudado a distribuição de galáxias em grande escala, mostrando que as galáxias não estão distribuídas uniformemente, mas formam filamentos no espaço. Um exemplo destes filamentos é a Grande Parede (Great Wall), um concentração de galáxias que se estende por cerca de 500 milhões de anos-luz de comprimento, 200 milhões de anos-luz de altura, mas somente 15 milhões de anos-luz de espessura. Esta estrutura está a uma distância média de 250 milhões de anos-luz da nossa Galáxia, e tem uma massa da ordem de 2x10 à 16ª potencia M. Entre estes filamentos estão regiões, de diâmetros de 150 milhões de anos-luz sem galáxias. A estrutura lembra um esponja.

Distribuição de galáxias no espaço, conforme observações de Margaret Geller e John Huchra. Cada ponto nesta figura representa uma das 9325 galáxias, na direção do pólos sul e norte da nossa galáxia. Nossa galáxia está no centro da figura, onde as duas partes se unem; as regiões não mapeadas são obscurecidas pelo disco da nossa galáxia. A Grande Parede é a banda de galáxias que se estende de lado a lado quase no meio da parte superior da figura.
wall1.epsf

3D


Colisões entre galáxias

Galáxias em aglomerados estão relativamente próximas umas das outras, isto é, o espaço entre elas não é grande, comparado com seus tamanhos (o espaçamento entre as galáxias é da ordem de apenas cem vezes o seu tamanho, enquanto a distância média entre as estrelas é da ordem de 1 parsec)(22 milhões de diâmetros solares). Isso significa que provavelmente essas galáxias estão em frequentes interações umas com as outras.

Nos catálogos existentes de galáxias peculiares há muitos exemplos de pares de galáxias com aparências estranhas que parecem estar interagindo uma com a outra. Podemos entender muitos desses casos em termos de efeitos de maré gravitacional. Os efeitos de marés entre pares de galáxias que casualmente passam perto uma da outra têm sido estudados por Alar e Juri Toomre. Eles assinalaram três propriedades fundamentais nas interações por maré: (1) a força de maré é proporcional ao inverso do cubo da separação entre as galáxias; (2) as forças de maré sobre um objeto tende a alongá-lo; assim, os bojos de maré se formam no lado mais próximo e no lado mais distante de cada galáxia em relação à outra; (3) as galáxias perturbadas geralmente giravam antes do encontro de maré e a distribuição posterior de seu material deve portanto refletir a conservação de seu momentum angular.

Como um primeiro resultado, é de se esperar que uma interação de maré entre duas galáxias puxe matéria de uma em direção à outra. Essas "pontes" de matéria realmente se formam entre as galáxias interagentes, mas também se formam caudas de matéria que saem de cada galáxia na direção oposta à outra. Devido à rotação das galáxias, as caudas e pontes podem assumir formas esquisitas, especialmente se levarmos em conta o fato de que os movimentos orbitais das galáxias estarão em um plano que forma um ângulo qualquer com a nossa linha de visada. Os irmãos Toomre têm conseguido calcular modelos de galáxias interagentes que simulam a aparência de diversos pares de galáxias com formas estranhas, vistas realmente no céu.

NGC4038 colisao
NGC 4038AB: um exemplo clássico de galáxias em colisão.

Fusão de galáxias e canibalismo galáctico

  as galáxias se encontram (o termo "colisão" é incorreto; elas ñ colidem; elas se juntam ou se modificam e se afastam) Se as galáxias se encontramcom velocidade relativamente baixa, elas podem evitar a disrupção por maré. Os cálculos mostram que algumas partes das galáxias que se encontram podem ser ejectadas, enquanto as massas principais se convertem em sistemas binários (ou múltiplos) com pequenas órbitas ao redor uma da outra. O sistema binário recentemente formado, encontra-se envolto em um envelope de estrelas e possivelmente matéria interestelar, e eventualmente pode se fundir formando uma única galáxia. Esse processo é especialmente provável nos encontros entre os membros mais massivos de um aglomerado de galáxias, que tendem a ter velocidades relativamente mais baixas. A fusão pode converter galáxias espirais em elípticas.

O termo fusão de galáxias é usado em referência ao encontro entre galáxias de tamanhos semelhantes. Quando uma galáxia muito grande interage com outra muito menor, as forças de maré da galáxia maior podem ser tão fortes a ponto de destruir a estrutura da galáxia menor cujos pedaços serão então incorporados pela maior. Astrônomos chamam este processo de canibalismo galáctico.

Observações recentes mostram que galáxias elípticas gigantes, conhecidas como galáxias cD, têm propriedades peculiares, tais como: halos muito extensos (até 3 milhões de anos luz em diâmetro), núcleos múltiplos, e localização em centros de aglomerados. Essas propriedades sugerem que essas galáxias se formaram por canibalismo galáctico.

Muitas vezes, o encontro entre as galáxias não é forte o suficiente para resultar em fusão. Numa interação mais fraca, ambas as galáxias sobrevivem, mas o efeito de maré pode fazer surgirem caudas de matéria, em um ou ambos lados das duas galáxias. Muitas galáxias com aparências estranhas, que não se enquadram em nenhuma das categorias de Hubble, mostram evidências de interações recentes. Simulações por computador mostram que sua forma pode ser reproduzida por interação de maré em encontros. Um resultado recente de simulações em computador é a possibilidade de que encontros possam transformar galáxias espirais em elípticas: a interação pode retirar gás, estrelas e poeira das duas galáxias, transformando-as em uma elíptica. O encontro pode também direcionar grande quantidade de gás ao centro da elíptica resultante, propiciando a criação de um buraco negro.

Quasares

Imagem no ótico do quasar 3C 279, obtida com o Canada-France-Hawaii Telescope de 3,6 m de diâmetro. O quasar tem magnitude aparente V=17,75 e magnitude absoluta estimada de MV=-24,6. O nome vem do fato de ser o objeto número 279 do terceiro catálogo de rádio fontes de Cambridge. Pelo módulo de distância, r=2,951 Gpc.
3c279.epsf

Os quasares  foram descobertos em 1961, como fortes fontes de rádio, com aparência ótica aproximadamente estelar, azuladas. Mais provavelmente são galáxias com buracos negros fortemente ativos no centro, como proposto em 1964 por Edwin Ernest Salpeter (1924-) e Yakov Borisovich Zel'dovich (1914-1989). São objetos extremamente compactos e luminosos, emitindo mais do que centenas de galáxias juntas, isto é, até um trilhão de vezes mais do que o Sol !   São fortes fontes de rádio, variáveis, e seus espectros apresentam linhas largas com efeito Doppler indicando que eles estão se afastando a velocidades muito altas, de até alguns décimos da velocidade da luz. O primeiro a ter seu espectro identificado foi 3C 273, por Maarten Schmidt (1929-), em 1963. Este quasar tem magnitude aparente V=12,85, mas magnitude absoluta estimada de $ M_V=-26,9.$ Pelo módulo de distância, r=891 Mpc.

redshift
O espectro do quasar 3C 273 no ótico e infravermelho próximo é dominado pelas linhas do hidrogênio em emissão e deslocadas para o vermelho (redshifted) por efeito Doppler. Por exemplo, a linha H$\beta$ está deslocada de 4861Å para 5630Å.

quasar.epsf
Desenho estilizado de um quasar, com um buraco negro no centro,
um disco de acresção em volta deste, e jatos polares.

No modelo mais aceito, o buraco negro central acreta gás e estrelas da sua vizinhança, emitindo intensa radiação enquanto a matéria se acelera, espiralando no disco de acresção, e parte da matéria é ejetada por conservação de momento angular. Quando o buraco negro consumir toda matéria circundante, ele cessará de emitir.

quasares
Imagens obtidas por John N. Bahcall (1934-2005) e Mike Disney com o Telescópio Espacial Hubble, da NASA, mostrando que os quasares ocorrem tanto em galáxias normais quanto em galáxias perturbadas. Por exemplo, PG 0052+251 (canto esquerdo superior), a 1,4 bilhões de anos-luz da Terra, reside em uma galáxia espiral normal; PHL 909, a 1,5 bilhões de anos-luz (canto inferior esquerdo), em uma galáxia elíptica; IRAS04505-2958, PG 1212+008, Q0316-346 e IRAS13218+0552, em vários tipos de galáxias em interação.

Hoje a teoria mais aceita é que os quasares são buracos negros com massas de 1 milhão a 1 bilhão de vezes a massa do Sol ! Se localizam no núcleo de galáxias ativas.

 

z=6,4
Em janeiro de 2003, Xiaohui Fan, Michael Strauss, Eva Grebel, Don Schneider e colaboradores do Sloan Survey divulgaram o mais distante quasar até agora, com z=6,4, que representa o Universo quando este tinha somente 800 milhõs de anos.
Variação do espectro com z

Radiogaláxias

3C219
Superposição da imagem ótica (em azul) com a imagem em rádio (em vermelho) da rádio-galáxia 3C219, que está a 500 Mpc. Enquanto a galáxia tem 100 mil anos-luz de diâmetro, os jatos cobrem 1 milhão de anos-luz.

Radiogaláxias são galáxias que têm uma emissão em rádio muito intensa, em torno de 1033 a 1038 watts, lembrando que a luminosidade do Sol é de 3,83 × 1026 watts. Observadas no ótico, geralmente têm a aparência de uma galáxia elíptica grande, mas, observadas em rádio, apresentam uma estrutura dupla, com dois lóbulos emissores em rádio, localizados um em cada lado da galáxia elíptica, e a distâncias que chegam a 6 Mpc de seu centro. Outra característica das rádiogaláxias é a presença de um jato de matéria saindo da fonte central, localizada no núcleo da galáxia. A explicação mais plausível para os jatos é a mesma dos quasares: partículas carregadas se movendo em um campo magnético. Como a trajetória seguida pelas partículas é helicoidal, seu movimento é acelerado e elas irradiam energia. Uma das radiogaláxias mais brilhantes é Centauro A, localizada na constelação do Centauro, no Hemisfério Sul celeste:

Centaurus A
Imagem da galáxia peculiar Centauro A, obtida no Cerro Tololo Interamerican Observatory, mostrando um grande anel de massa em torno da galáxia.

Galáxias Seyfert

Circinus
Foto da galáxia Seyfert Circinus, com dois anéis, um de diâmetro de 1300 anos-luz e outro de 260 anos-luz, obtida com o Telescópio Espacial Hubble.

As galáxias Seyfert, descobertas por Carl Keenan Seyfert (1911 - 1960), em 1943, são galáxias espirais com núcleos pontuais muito luminosos, em torno de 1036 a 1038 Watts, contribuindo com aproximadamente metade da luminosidade total da galáxia no ótico. O espectro nuclear apresenta linhas de emissão alargadas, de elementos pesados altamente ionizados, e um contínuo não-térmico muito intenso no ultravioleta, cuja estrutura é explicada como devida a movimentos internos muito rápidos no núcleo. Geralmente, a emissão dessas galáxias sofre variabilidade em períodos relativamente curtos, o que leva a concluir que a fonte emissora deve ser compacta, como um buraco negro. Estima-se que aproximadamente 1% de todas as galáxias espirais são Seyfert.

Objetos BL Lacertae (Blazeres)

Os objetos BL Lacertae, também chamados blazares, constituem uma outra classe de objetos exóticos, que apresentam um núcleo muito brilhante e compacto. Têm como principais características a extraordinária variabilidade em curtos períodos de tempo, luz polarizada, e um espectro não-térmico sem linhas de emissão ou absorção. O primeiro objeto desse tipo, e que deu nome à classe, foi BL Lacertae, observado em 1929, na constelação do Lagarto. No princípio, foi confundido com uma estrela, por seu brilho poder variar por um fator de 15, em poucos meses. Muitos desses objetos são também fontes de rádio, e acredita-se que eles sejam rádiogaláxias em que a linha de visada fica na direção do jato. Atualmente a maioria dos astrônomos aceita que as diversas formas de galáxias com núcleo ativo, como galáxias Seyfert, quasares e blazares, tenham sua fonte de energia originada no mesmo processo básico: gás sendo sugado por um buraco negro central, liberando energia potencial na forma de radiação.

O catálogo de galáxias ativas dos franceses Marie-Paule Véron-Cetty e Philippe Véron, Quasars and Active Galactic Nuclei (10th Ed.), publicado em 2003, contém 48.921 quasars (definidos como objetos mais brilhantes que magnitude absoluta B=-23), 15069 AGNs (Active Galactic Nuclei, definidos como objetos mais fracos que magnitude absoluta B=-23) e 876 blazares, incluindo o Data Release 1 do Sloan Digital Sky Survey, publicado em 2003, onde foram encontrados 16 713 quasares.

As maiores dúvidas sobre as galáxias concentram-se em como elas se formaram, qual é a composição de sua massa escura - que pode corresponder a 90% de sua massa total, e porque algumas galáxias parecem ter um buraco negro central que libera uma quantidade colossal de energia. 

Considerando apenas as galáxias grandes e luminosas como a Via Láctea, Andrômeda é a mais próxima, mas incluindo todos os tipos de galáxias, as Nuvens de Magalhães são mais próximas.


Movimentos Superluminais
Relação de Tully-Fisher, Luminosidade e Brilho das Galáxias

proxima Cosmologia

Volta Astronomia e Astrofísica

©
Modificada em 1 dez 2004