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ABSTRACT

An adaptive filtering algorithm is described that uses the
modified Conjugate Gradient (CG) algorithm. It has the
ability to perform sample-by-sample updating of the fil-
ter coefficients more efficiently than previously described
CG methods. Its performance can be comparable to the
RLS and LMS-Newton algorithms, giving fast convergence
for highly correlated input signals, while maintaining low
misadjustment. Simulations demonstrating its performance
and the influence of various parameter choices are shown.
A convergence criterion is also derived.

1. INTRODUCTION

The Conjugate Gradient (CG) Method can be applied to
adaptive transversal filters as shown in [1, 2]. Doing this,
the objective becomes the solving of the following equation:

Rw=>b (1)

where R is the N x N correlation matrix of the input data
vector xx and b is the cross-correlation vector between the
input data and the desired response dix. If R and b are de-
fined as in [4] for the LS problem, the CG method offers an
alternative way to solve for w, instead of inverting matrix
R. If they are defined as in [1], where a sliding window is
used, then the CG method can be viewed as a Stochastic
Gradient-based method. Many adaptive filtering applica-
tions require the weight coefficients to be updated at each
sample. While with previously developed CG algorithms
this can be done at the expense of running several itera-
tions per sample, we here propose modifications that will
allow the algorithm to run just one iteration per sample
while still maintaining performance comparable to RLS or
LMS-Newton. One of the main problems that RLS and
LMS-Newton have is the necessity to estimate R™!. If the
estimated R ™! loses the property of positive definiteness, it
will cause the divergence of the algorithm [4]; this doesn’t
happen with the CG method.
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1.1 THE BASIC CONJUGATE
GRADIENT METHOD
The basic Conjugate Gradient Algorithm can be stated as
follows [5, 7], after some rearrangement for better clarity:
wo =0, go =b, po =33 8o, P1 =g, k=1
while & < kmax

begin
v = Rp;
ay = pr_1f pr (2)
Wik = Wg—1+ akDk (3)
8k = Bk—1— QpV (4)
PE = Bk
Br = pr/pr—1 (5)
Pr+1 = 8k + BxDx (6)
k= k+1
end

where oy is a step size that minimizes a cost function f(w),
Bk provides R-conjugacy for the direction vector px, and g
is the residual vector defined as gx = b—Rwj = —Vf(w)T‘

Variations of this algorithm are presented in [5, 7] where it
is shown that one can use an iterative method to terminate
the algorithm, instead of the fixed kjuq, iterations, or use
different ways to compute o and 3. The existence of only
one matrix-vector multiplication is possible due to the use
of a recursive formulation for the residual [2, 7}:

8k = Bk-1 — axRpy. (7

This formulation assumes that R and b are constants
throughout the knq, iterations. It is applicable for the case
of block processing and has been used in [2, 3]. Here we
propose modifications that allow it to be used in non-block
processing or sample-by-sample update.

1.2 CONSIDERATIONS ABOUT THE
COST FUNCTION

When the CG algorithm is used to solve (1), it is indirectly
minimizing a cost function defined as

f(w)= %WTRW -bTw. (8)
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The way R is defined will directly influence the performance
of the algorithm. There are two ways that one can compute
R by using different schemes of data windowing, namely:
1) Finite slidingdata window: Where only the data inside
a window of finite length n, are used. The correlation
matrix and the cross-correlation vector are defined as

k
1 T
Re = = > xx] (9)
J=k—nqy,+1
1 k
br = — > dx, (10)

J=k—nyw+1
The residual is then computed as

bk —-I{kVVk
k

> U= wix)x).

wo.
J=k—nyu+1

(11)
(12)

gk
1

The formulation in (12) is computationally more efficient if
Ny 1s smaller than N, the length of xx.

2) Ezponentially decaying data window: This gives the
same correlation function as is used by the RLS algorithm.
Using it with the CG algorithm, a performance compara-
ble to RLS can be achieved. The correlation and cross-
correlation functions are given by

ARj-1 + XkXp
Abk-1 + dixx

Ry
bk

(13)
(14)
where A is the forgetting factor. For sample-by-sample pro-

cessing, a recursive formulation for the residual can be found
by using (13), (14) and (3), resulting in

1

bk —-I{kVVk
Agk—1 — cxRipr + Xk (de — xf We—1). (15)

il

gk

Il

1.3 TERMINATION

There are many schemes proposed in the literature to ter-
minate the CG algorithm. In [7] an iterative scheme was
proposed, based in the norm of the residual and a maxi-
mum number of iterations. In [1], the algorithm terminates
after min(N, ny,) iterations, due to the use of the finite slid-
ing data window in the computation of the residual. Either
way, the CG algorithm has to run several times in order to
converge. This is not a problem when block processing is
used, but in sample-by-sample updating this procedure is
computationally costly. One way to have just one iteration
per coeflicient update is to use some degenerated scheme.
By degeneration we mean that gx is not completely orthog-
onal to the subspace spanned by {po, p1, ..., Px} or, in other
words, gL pi = 0,4 < k, does not hold. Another interpreta-
tion is to consider that using « given in (2), the algorithm
has the property that o minimizes the cost function f(w)
on the line wig—1 + apk. Using a constant value for o cre-
ates a degenerated CG since the cost function f(w) is not
completely minimized. Another example of a degenerated
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TABLE I. The modified CG algorithm.

wo =0, go =bo, P1 =go, k=1

g = U—hrprgk_l
PTR.ps
Wi = Wk—1 + apPk
gk = Agk—1 — oxRxpr + Xp(dx — szk-—l)
_ (8r—Ek-0)78x
B = L1821

Pr+1 = gk + BxDx

scheme is to use a non-constant matrix R at each iteration.
While it degenerates the algorithm, it also allows the algo-
rithm to be used in a non-block adaptation scheme. The
new update of the residual is given by (15).

1.4 LINE SEARCH

In the CG algorithm, « is a step size used in the update
of the weight vector as shown in (3). It is usually chosen
so that f(Wx—1 + apx) is minimized. Explicitly computing
o for the cost function (8) results in (2). This is an ex-
act line search along the direction px. Other inexact line
search schemes can be used, but they have to satisfy the
convergence bound given by (see Appendix)

(A-05)<n <A (16)

k - 7)——-—!
p{RkPk

In [1}, a method is suggested called “Fast CG,” where o
is a constant value. Depending on the value used, conver-
gence might not be guaranteed. Also, using gf g instead of
PFgk—1 as shown in (2) is less effective for the degenerated
scheme (see Appendix).

1.5 RESETING THE ALGORITHM

For sample-by-sample processing, it’s important to reset the
direction vector pi to the pure gradient periodically, in or-
der to ensure the convergence of the algorithm, because the
degenerated scheme will not allow the algorithm to con-
verge in N steps. How often it is reset will influence the
performance of the algorithm. If taking direction px does
not increase the cost function, then global convergence can
be assured since a pure steepest descent step is taken ev-
ery time the algorithm is reset. A non-reset method can
also be used, but the Polak-Ribiere method [5, 6] for the
computation of §, given by

g = 8 —Tgk~1)Tgk (17)

8k _18k—1
should be used for better performance. Simulations have
shown that (17) performs better than (5) when using a de-
generated scheme. Table I shows an implementation of the
algorithm taking into account some of the considerations
discussed.



TABLE II. The CG algorithm using different implemen-
tations of B and reset schemes. A = 0.99, SNR= 30dB,

o2 =
MSE
CG algo. with: n=0.8 7 =0.99
reset after N iter. 1.1278 x 10~ | 1.1290 x 10~°
non-reset 7.3268 x 1072 | 7.2802 x 10~
non-reset Polak-Ribiere | 1.1221 x 10™° [ 1.1226 x 10~°
RLS 1.1216 x 1073

TABLE II1. Performance for different implementations of o
and values of . SNR= 20dB, A = 0.99.

MSE
using oy as in eq. (20) eq. (22)
7= 0.6 1.1213 x 1072 | 1.1210 x 1072
n=08 1.1221 x 1072 | 1.1225 x 10~2
n = 0.99 1.1227 x 1072 unstable
RLS [4] 1.1216 x 10~2

2. SIMULATIONS

Several simulations were performed using two basic config-
urations [4]: System Identification (SI) and Linear Predic-
tion (LP). All simulations were ensemble averaged over 100
independent trials. First we simulated sevaral implemen-
tations discussed previously. Consider an SI configuration
where the unknown plant is an FIR filter of order 20, with
o2 = 1. Table II compares the performance for different re-
set schemes. It is shown that using a non-reset scheme the
algorithm performs badly due to the loss of orthogonality
between gi and px. Table III compares the performance
for different implementations of o and values of 5, showing
that when orthogonality is not attained, such as in the de-
generated scheme, the formulation of « in (20) is preferable
to that of (22). Table IV shows the validity of the con-
vergence criterion. It is shown that this simple criterion is
sufficient to guarantee the stability of the algorithm. Ta-
ble V compares the MSE due to the use of various data
windowing schemes, showing that using the exponentially
decaying data window gives much better performance than
using the finite-length data window. The plant is a 5th or-
der FIR filter with eigenvalue spread of 46. Fig. 1 compares
the performance of RLS, CG and Normalized LMS, where
unrms = 1 and 0.1. These step sizes give the fastest con-
vergence rate and comparable misadjustment for the NLMS
in steady-state, respectively. Finally, simulations were per-
formed using the LP configuration. Fig. 2 shows the sim-
ulation results, where unrams = 1 and 0.01, 7 = A = 0.99
and SNR= 30dB. The second-order AR model used has an
eigenvalue spread of 100. Again, p = 1 gives the fastest
convergence rate while 4 = 0.01 gives comparable misad-
justment in steady-state.

3. CONCLUSION

A modification to the Conjugate Gradient algorithm for

TABLE IV. Testing the convergence criterion for different
values of A. The algorithm becomes unstable for values of 5
equal or greater than the ones shown. SNR= 10dB, ¢2 = 1.

MSE
A 7, eq. {20) | n, eq. (22)
0.99 2.0 1.0
0.9 2.0 0.99
0.8 1.8 0.87
0.7 1.53 0.77

System identification configuration. Order=20
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Fig. 1. Simulations using SI configuration. #7=21=0.99,

SNR= 20dB.

TABLE V. Performance for different windowing schemes.
SNR= 20dB, o2 =1 and 5 = 0.7.

Nw MSE
2 1.6455 x 10~ "
5 7.6890 x 10—
10 2.2636 x 102
15 1.5678 x 10—~
20 1.3744 x 1072
25 1.2771 x 102
A =099 | 1.0403 x 10~
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Linear prediction configuration. Order=2
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Fig. 2. Simulations using LP configuration.
SNR= 30dB.

7=X=0.99,

adaptive filtering is described. This algorithm can have
the same performance as some high-convergence-rate algo-
rithms such as the RLS and LMS-Newton, with the advan-
tage that there is no need to perform matrix inversion or
to estimate R™!. It has been shown that there are several
ways to implement the algorithm, leading to different re-
sults. Several simulations were carried out to illustrate the
performance due to different implementation choices. Two
methods of data windowing are considered: the finite slid-
ing window and the exponentially decaying window. With
the first, the convergenge rate is fast, but misadjustment
is high. By using an exponentially decaying window it is
possible to attain fast convergence and low misadjustment
at the same time. A convergence criterion is given, which
provides a sufficient condition that guarantees the stability
of the algorithm.

APPENDIX

For the CG algorithm, a descent property given by
0 < pFegr < 0.5 p¥gi_1 should hold in order to guar-
antee convergence [8]. A looser condition can be set if the
following is used:

0 < E[pi gx] < 0.5E[pi gr—1]. (18)

Multiplying (15) by pi gives

PH &k = APF 8k—1 — @kD} RiDk + Pk Xidk — DE XkX) Who1.

Taking the expectation of both sides and considering px
uncorrelated with xx, di and wg_1, we have

E[pi gr] = ME[p¥ gk—1] — Elax] E[pi Rpx]

—E[pi R(wx_1 — w")]

where the Wiener-Hopf equation [4] has been used. As-
suming that the algorithm converges, the last term can be

neglected and we should have

Elpigr—1] E[pigr-1]

A sufficient condition that satisfies (19) is to use

T
Dk 8k~1
Q) = 7 —m—— 20
"DIRips (20
where (A — 0.5) < 7 < A. Due to the degeneration scheme,
the Expanding Subspace Theorem [5] is not valid and we
have, after multiplying (6) in instant k — 1 by gx_1:

PrE8r_1 = Eh_18k—1 + Br-1DPp18k—1 (21)

where the last term is not zero due to the use of a non-
constant R. So, using

gF_18k_1

D =
* anRkpk

(22)

is less effective than using (20). Still, it’s possible to use
(22), but 7 must be set smaller in order to compensate for
the presence of an extra term in (21).
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