A Roundoff Error Analysis of the Normalized LMS Algorithm

Pi Sheng Chang and Alan N. Willson, Jr.

Electrical Engineering Department
University of California, Los Angeles
Los Angeles, CA 90095
e-mail: pschang@ee.ucla.edu, willson@ee.ucla.edu

Abstract

This paper describes an analysis of the Normalized
LMS algorithm under finite word-length effects. It is
shown that, using the Averaging Principle, it is possi-
ble to derive a good approzimation for the total MSE
1n steady-state. Implementation issues are considered.
It is shown that, in general, the quantization of the di-
viston operation will not cause the performance of the
algorithm to deteriorate. An example using a look-up
table for the division operation is analyzed and simu-
lations are shown to support the analysis.

1 Introduction

Normalized LMS (NLMS) has been known to per-
form better than LMS in several applications. Recent
work has shown that its analysis is not straightforward
and its performance can be quite different from LMS
[1, 2, 6], but almost no study has been done of its per-
formance when fixed point arithmetic is used. Here we
complement the analysis made in [3] for LMS, by ap-
plying the same approach to the NLMS. Some approx-
imations are introduced in order to find a closed-form
expression for the total MSE in steady-state. Further-
more, simulations were done to show quantitatively
the amount of discrepancy when such approximations
are used.

1.1 The Normalized LMS Algorithm

The approach used here is similar to the one pre-
sented in [3]. The same notation and assumptions are
used. By assumptions we refer to the usual Funda-
mental Assumptions and the Principle of Orthogonal-
ity [4]. The basic NLMS algorithm is given by the
following equation:

HenXn
lI%nl|?

)

where e,, is the estimation error, w, is the vector of
tap weights at instant n, x, is the input vector of

Wni1 = Wp +
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dimension N, and ||x,||? = xLx, is the square of the

Euclidian vector norm. Furthermore, we consider the
division operation as a scalar-valued function of x,, so
that it can be better handled later, then (1) can be
rewritten as

Wp + pienXn (X5 ). (2)

Wn+i

2 Fixed-Point Arithmetic

It is assumed that rounding is used as quantization
in the fixed-point arithmetic. The quantizer is mod-
eled as an additive error, and it’s notation is given
by Qla] = a + ¢, where ¢ is the quantization error.
The quantization error associated with a B-plus-sign-
bit representation is assumed to have uniform distri-
bution with variance o? = 2728/12. Data samples
are represented by Bg-plus-sign-bit numbers with vari-
ance o2 and weight coefficients are represented by B.-
plus-sign-bit numbers with variance ¢2. Unprimed
symbols represent infinite precision quantities while
primed symbols represent finite precision quantities.
No overflow is assumed, thus additions don’t intro-
duce error, only multiplications. The new input se-
quence and weight vector in finite precision arithmetic
becomes

3)
4)

/
X'n=Xn+aQ,
/
Wi =W, + pn.

2.1 The Model

Fig. 1 shows the block diagram of an adaptive filter.
The power-of-two scaling factor a is used in order to
avoid overflow in the weight vector w, while tracking
the input signal, as described in [3]. The scaled desired
sequence y;, and the computed output of the filter g/,
are given by

Yn, Yn + Bn (5)
7 = QwWrix]
= wlx, +plx, +wlan +n, (6)

The variance of 7,,, where ag

the inner product is implemented [3]. If only the result

= co2, depends on how
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Fig. 1. Model for the adaptive filter as shown in [3].

is quantized, ¢ = 1, otherwise, if every internal mul-
tiplication is quantized, then ¢ = N. The estimation
error e), is [3]

en Yo~ n
= Yn— wan - p:‘fxn - Wsan + Bn = 1a(7)

and the total output error is

(8)

- 1 1
dn — d; = Een - E(Pz;xn + Wzan + )

where

©)

— T
€n = Yn — W, Xpn.

2.2 Total Output Mean Square Error

The term e,/a is the estimation error of the infi-
nite precision algorithm and the mean squared value
assoclated with this term is given by (see Appendix

A)

§min

N X
1~ H Zi:l 2trR—p)\i
where &min = E[(dp — w*Tx,)?] and A;,i = 1,., N,
are the eigenvalues of R. The mean squared value of
the arithmetic error is equal to [3]

(10)

£inf. prec. =

Ear = 5 (BI(PT )] + El(wEan)?] + BT}, (1)

In steady-state, the second term of expression (11) is
equal to (see Appendix B)

E[(Wgan)2] = E[wan]aﬁ =
1 2
—uh | e

(nw*w i
(12)

The expression for E[(plx,)?] in steady-state is de-
rived in a similar way to that in [3], where we have

(13)

Hemin

N
ZI,V i 4 PR
i=1 oppR—pi; 1=1

El(prxn)*] = tr(Elp,prIR).
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Rewriting (7), using ¢, = fp — 5, and (9) we have

/

€y = T

€n — p:‘:xn —wpan +, (14)

where (, has variance (1 + ¢)o3. The weight update
according to the NLMS algorithm is

W'n+1 =wp,+ Q[uX’neéf(xn)]
=wn+ px'ne, f(xn) + oy
=Wn + pXnen f(Xn) — pxnX2 oy f(%n)—
X Wi Ot f (%) + X f(Xn ) + pronen f(xn) +(ﬂig

Substituting (4) into the previous expression, we have

Pnt1 =Fup, + by, (16)
where
Fo = I = pxaxd f(x2) (17)
and
bn = —pxXa Wy o f(%Xn) + 1%XnCn £(Xn)
+ petnen f(Xn) + o, (18)

Using P, as E[p,pL] and Q,, as E[b,bT] we get
Pop= E[FnPnFn] +Qn (19)
and

Qn = W2 EIwI W0 Ef (%) %axT] + p2(1 + 0)

B[ (%n) % x|+ 2 Ele2)02 E[f (%, )T+ o?1. (20)

In the steady-state, as n — co,
Qoo = p2||W* [P0 E[f (%n ) xnxL ] + p?(1 + c)-

OB f(%n) %n XD ] + p2€min 02 E[f (%0 )]+ 021, (21)

It would be more correct to use the exact value for
E[wlw,] as in (12), but here we have used the same
approximation made in (3], so that both algorthms
can better be compared. Still from [3], we can get the
recursion

Prny =P, _‘N(E[f(xn)xnx£}1)n +PnE[f(Xn)xnxz;])

+ 2 E[f (%) %0 X2 tr[RP,] + Qp. (22)

Using the Averaging Principle (see discussion in Ap-
pendix A), it is possible to simplify the expression
above by separating the f(x,) terms. Thus, we have

4 Pop1=P, — /L(E[f(xn)]RPn + PnE[f(xn)]R)

+ p2 E[f(x) R4 [RP,] + Q,. (23)
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Fig. 2. Example of implementation of f(x,).

In the steady-state, P41 becomes equal to P,,, in the
limit, so we can write

tr(RPy) = tr(E[p,p; |R)

_ irQn
 2uE[f(x4)] — p2E[f(xn)?trR’
Putting everything together, we have

(24)

gmin

1
+ —_—
N Y
1- uz;’:l ZiTR*ll/\i

a

¢ =

No2 + p2[(1 + c + ||w*||2)trR + Emin NI E[f(x,)?]02

|

2RE[f(xn)} — p2E[f(x5)’JtrR
/lgmin

N by ’
L= ud o R

+(llw*||* +

ud 1
2 2
§2trR—#/\i)ad+cad . (25)

3 Example of Implementation

Since we have to define a specific implementation
in order to find E[f(x,)] and F[f(x,)?], consider, as
an example, the implementation of f(x,) as shown in
Fig. 2. For this particular example we have

f(xn) +¢2, (26)

1
 Ilxall® + q1n

where the quantization noise g1, is due to the quan-
tization before entering the look-up table and ¢2, is
due to the quantization of the inverse function stored
in the look-up table. Assume that the value after the
multiplier is rounded to 4; bits, and that the look-up
table was built using rounding as quantization, then
the following approximation is valid

1

Blf(a)] ~ ox (21)
BUea)] ~ Grpper ton @9
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TABLE L. FIR filter coefficients used for the system
to be identified.

? w; ! wy

0 | 3.422070 x 10~ | 10 | 9.878996 x 102
1] 8.640357 x 107° | 11 [ 9.353092 x 10~ 2
2 [ 1.671130x 10=* | 12 | 8.371592 x 10~2
3 | 2.767372 x 10~ [ 13 [ 7.061812 x 102
414105275 x 107~ [ 14 | 5.584495 x 10~
5 | 5.584494 x 10~“ | 15 [ 4.105275 x 10~ 72
6 | 7.061811x 10~2 116 [ 2.767372 x 10~
7 18371592 x 10=% [ 17 [ 1.671130 x 102
8 [ 9.353091 x 10—~ | 18 | 8.640357 x 10~3
9 19878996 x 10~ | 19 [ 3.422070 x 10~

TABLE Il. Values of ¢ (x10~°), theoretical and sim-
ulated, for NLMS algorithm.

{_ p TBs B: b b ] Simull [ Theor. ]
inf. precision 5.98 6.02
1212 8§ 8 6.33 6.48
1 12127 4 14 6.37 6.49
127 16§ 8 6.00 6.04
inf. precision 3.93 3.92
1271278 8 4.31 4,99
0.5 12 12 4 1 4.27 453
12716 8 8 3.94 3.93
inf. precision 3.35 3.35
127 1278 8 3.66 4.38
0.25 1212 414 3.64 4.38
1216 8 8 3.37 3.36
inf. precision 3.12 3.12
12 127§ 8 3.46 5.04
0125 [ 12 127 4 14 3.42 0.04
1216 8§ 8 3.13 314

where 07, = 272%2/12 and 02, = N(27%%1 4 2-4B« _
2-41-2Ba+1) /19, For 2B4 much greater than by, agl =
N 27%%1/12. The value of bs is dependent on the

length of the filter. It should have enough bits to
represent the norm without saturating.

4 Simulation Results

A Gaussian sequence of zero mean and variance
o2 = 1/4 was generated and used as input data, so
that R = 02I. The System Identification (SI) config-
uration [4] was used for all simulations. Theé system
to be identified is an FIR filter with coefficients shown
in Table I. This is a Prolate window with § = 0.2«
and order = 20. The adaptive filter’s order is 19,
so that &min is given by the square of the last coef-
ficient of the window times the variance of the signal

(Emin = wi%"'% .



TABLE 1. Values of ¢ (x10~°), theoretical and sim-
ulated, for LMS algorithm (¢ = 0.108).

By B, Simul. | Theor. [3]
inf. precision | 3.93 3.94
12 12 4.28 4.53
12 16 3.95 3.95

The first example checks the validity of the ex-
pressions obtained. Simulations were performed for
several values of pu and different numbers of bits for
By, B., by and by, ¢ = 1 (we only quantize the result of
vector-vector multiplication), run for 3000 iterations,
ensemble averaged over 100 independent trials. It can
be seen from the simulation results in Table II that
the use of the Averaging Principle doesn’t affect accu-
racy very much. Note that all infinite precision values
match closely. It is shown that the calculated values
match the simulation and that the number of bits used
for by and by produce little effect on the final total out-
put error.

In order to compare the performance of LMS and
NLMS, we first chose p’s that gave the same perfor-
mance for both algorithms. The theoretical and simu-
lated MSE for LMS algorithm are shown in Table III.
The pirars chosen here gives the same performance as
unms = 0.5, as can be seen from the £ using infinite
precision in Table II. This shows that for this partic-
ular configuration, LMS and NLMS have almost the
same performance, even under finite word-length ef-
fects.

Next, the effect of quantization on the updating
of the coefficients is investigated. It’s known that if
some component of the product px/ef, is less in mag-
nitude than 2~ F<~1, the corresponding coefficient re-
mains unchanged [3]. The condition for the adaptation
to stop can be found in [3, 7] for LMS. For the NLMS
we have

2—ZBC

18, ELf(xn )1 Elen] < (29)

where 22,,, = 02 and E[e2] = a’¢. Table IV illus-

trates this effect. For u satistying (29), the total MSE
is not well predicted by (25), as shown in Table IV.

Finally we analyze the effects of the division opera-
tion. When fewer bits are used for b1, (28) shows that
E[f(x,)?] decreases in value. From (25) we can see
that decreasing E[f(x,)?] will also tend to decrease
the total MSE. This means that a small look-up table
can even improve slightly the performance of the al-
gorithm. But if b; is too small, the quantization can
no longer be modeled as additive noise and the above
reasoning cannot be applied. Some simulation results
are shown in Table II for b; = b, = 4 and 8 bits, and
also in Table V.
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TABLE IV. Values of £ (x10~ 9)), theoretical and sim-

ulated, for u that satisfies (2

[ p T1Ba . 01 by | Simul. | Theor. |
1 10 10 8 8 8.96 13.44
0.5 10 10 8 8 5.69 13.62
025 110 10 8 8 6.40 19.85

0125110 10 & 8 | 29.45 33.82

TABLE V. Values of ¢ (x107°), theoretical and sim-
ulated, for different values of b;.

[ [ Ba B: b1 by [Simul. | Theor. |
12 12 6 871 3.645 [ 4.380343
026 [ 12 12 4 8 1 3.642 | 4.380341
12 12 6 8] 3448 | 5.042042
0.126 [ 1212 4 8 | 3416 | 5.042040

5 Conclusion

A roundoff error analysis of the Normalized LMS al-
gorithm has been presented. A closed-form expression
for the total MSE in steady-state has been derived.
It was shown that the theoretical results are in accor-
dance with the experimental results, when the stalling
phenomenon is not predominant. Implementation is-
sues were considered. In particular, for the look-up
table implementation of the division operation, it was
shown that, in general, quantizing the norm will not
deteriorate the performance of the algorithm. Sim-
ulations showing the amount of discrepancy due to
approximations made are also provided.

Appendix A

In order to derive the mean-squared error due to
NLMS, the Averaging Principle [5] was used. Using
this approximation we can decouple E[f(x,)x,x%] as
E[f(x,)]R. This approach has been used; for in-
stance, in [5, 8], and it is a good approximation for
Gaussian uncorrelated data (WGN), and/or for large
N (order of the filter). Fig. 3 shows the discrepancy of
this approximation. The relative error of the norm of
the difference due to the approximation made is plot-
ted for various values of N. Here we define the relative
eITor as '

X X7 E[X.XT]
& [fl—xﬂ - il

Rel. error =

BEaT 0

It is shown that for an eigenvalue spread (x(R)) equal
to 1, the error due to the use of the Averaging Principle
is at most 5%, while for high x(R), but also large N,
the error is still less than 10%.

It’s easy to see that, using this approximation, the
decoupled recursive expression of the correlation ma-
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Fig. 3. Discrepancy due to approximation using Av-
eraging Principle.

trix of the weight-error vector, as shown in [4] for LMS,
will change to the following expression for NLMS

; ; Azl DD W A2gi
z — b tn 277 Lai=1 Tt%n 2_7%i%n
Taan) = T~ 2y R @Ry Y @Ry
zfmin/\i
HR) (31)

where & is a diagonal element of QTK,Q, K, =
E‘[eneT], €, = W* —w, and Q is an orthonormal
transformation matrix. Consider the mean-squared
error due to the NLMS algorithm, defined as [4]

N
= EmintY_ Nizh. (32)

i=1

én = E[ei] = &min —}-t‘r‘[RKn]

In the limit, when n approaches infinity, xzn +1) and

zi, become equal. Solving (31) for Zf\;l izt we get

Emintt oIy m
'LLE i=1 2trR—u/\

tr[RKo] = (33)

and the mean-squared error, using (32) and (33), will
result in (10).

Appendix B

Here we note that
E[(wlca)?] =
= (E[w*Tw*"] + E[eTen] + 2E[Tw™])o?  (34)
= ([Iw*|” + trK)o? (35)

E[Wgwn]"g

The third term in (34) is zero because €n is uncorre-
lated with w*. Since we are interested in the steady-
state behav1or Le., trK, this value can also be ob-
tained from (31) where we can explicitly find #%_ and
therefore

(€min + trRK)
=1 =
Zx rKoo = Z R 9

but fmm + irRK = £, and this leads to the expres-
sion 1n (12).
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