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ABSTRACT

A method for spectral estimation is presented, using the
modified Conjugate Gradient (CG) algorithm. It imple-
ments an adaptive version of Pisarenko’s harmonic re-
trieval method, where the estimates are updated sam-
ple-by-sample. First, a constrained unit norm CG algo-
rithm is formulated, then it is recast into an unconstrained
minimization problem. The resulting algorithms can be ex-
tended to solve the generalized eigensystem problem, when
the noise covariance matrix is known a priori. It is shown
that the proposed algorithms’ convergence rate is compa-
rable to that of a least-squares type algorithm, while being
computationally more efficient. Performance simulations
are shown, and comparisons with some existing methods
are provided.

1. INTRODUCTION

Spectral estimation methods using adaptive transversal fil-
ters often give biased estimations due to the presence of
noise. In [1] an adaptive scheme was proposed to estimate
frequencies of sinusoids corrupted by white noise. It was
shown that by using the described method the estimates
were unbiased. In [2] the same problem was addressed but
a least-squares type of adaptive algorithm was used. In
[3] 2 technique using the Conjugate Gradient (CG) algo-
rithm was presented. Although this technique was compu-
tationally more efficient than the one presented in [2], it
is only suitable for block processing. The CG algorithm
is also used in [4, 5] to implement an adaptive Pisarenko
harmonic retrieval method. In [4] the problem of minimiza-
tion of the Rayleigh quotient is addressed, while in [5] a
rotational search is used. Here we use the modified CG
algorithm presented in [6] to implement a frequency esti-
mator in the presence of white noise, by using the same
approach described in [1, 2], where the weight-vector of an
adaptive FIR filter is constrained to have unit norm. It
was shown in [1] that by using this simple criterion it is
possible to obtain an adaptive version of the Pisarenko’s
harmonic retrieval method. The proposed method is also
computationally more efficient than the least-squares type
algorithms [2, 7, 8], and can update the frequency estimates
at one iteration per input sample. It has the same desir-
able fast convergence property but without the necessity to
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estimate the inverse of the correlation matrix. First, a con-
strained CG optimization algorithm is presented. Then,
by modifying the cost function, an unconstrained version
is formulated. Finally, when the noise covariance matrix
is known a priori, the proposed algorithms can estimate
frequencies in colored noise by solving a generalized eigen-
system problem.

2. THE MODIFIED CG ALGORITHM

The modified CG algorithm presented in [6] minimizes the
cost function defined as f(w)=w Rw/2 + bTw. The al-
gorithm is described by the following relations
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where dy is the desired response, oy is the step size that
minimizes the cost function f(w), 8x provides R-conjugacy
for the direction vector px, and gx is the residual vector
defined as gx = —Vf(w). Ri is the N x N sample corre-
lation matrix of the input data vector xx, and is computed
as

Ry = A;Ri_1 + Xu Xy (6)
where A is the forgetting factor of the exponentially de-
caying data window. The parameter n in (1) controls the
convergence of the algorithm and must be set within the
range (As — 0.5) < n < As [6]. This method can be applied
to FIR adaptive filtering problems by solving the normal
equation Rw = b, where R and b are approximated by
their time averaging versions.

3. THE PISARENKO’S HARMONIC
RETRIEVAL METHOD

Pisarenko’s harmonic retrieval method consists of finding
the minimum eigenvalue Amin and its associated eigenvec-
tOr Qumin of the correlation matrix R, and then computing
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the roots of the polynomial whose coeflicients are the com-
ponents of Qmin. In [1] it was shown that these roots are of
unit modulus and their angles are the harmonic frequencies
contained in R. Furthermore, by constraining the weight-
vector of an adaptive transversal filter to unit norm, it was
shown that the weight-vector converges to *qmin.

Consider the minimization of the cost function of
a deterministic least—squares type algorithm given by
1/2 Ez_ Ak ‘e [9]. Minimizing this cost function is equiv-
alent to usmg an exponentially decaying data window for
the computation of Ry as shown in [6]. In this case, the
function to be minimized becomes, after using the unit-
norm constraint on the weight-vector,

1 _
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The gradient or residual vector is then computed as

—Vf(w)T = —Rawy

gk =
1
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Equation (9) was obtained by using (6) and (2). The pro-
posed algorithm becomes

Set initial cond.: Wo = [1,0,...

P1 = &o, k=1.
T
Pr 8k-1
o = —_— 10
k np;‘:RkPk ( )
Wi = W1+ 0xPk (11)
we = wi/lwl (12)
8 = il (A s8r—1 — axRkPr — Xk (Xk Wi_1))
(13)
_ T
g = & Tgk—l) gk (14)
& 18k-1
Pry1 = 8k + BxPx. (15)

4. PRESERVING THE R-CONJUGACY
When the unit-norm constraint and variable R are used,
the vectors px lose the R-conjugacy property. In order
to preserve the conjugacy, more precise expressions for the
parameters ax and Fx have to be found.

Consider the Expanding Subspace Theorem [11], where
pPFgr = 0 should be satisfied. Premultiplying (13) by p}
we have

of
Prgk = I(/\fgk 1+ — axRxDPk — Xk (XEWi—1)) = 0. (16)

||W l

The o that satisfies (16) is given by

oy = Aplgr_1 — pFxk (X Wi 1) (1)
P RiDk

In order to ensure R-conjugacy, pr RxpPk+1 = 0 should be
satisfied [11]. Premultiplying (15) by p7 Rk, we have

PrReDr+1 = Dr Rigr + Bepr Rxpr = 0 (18)
and Sy is given by

T
gr ReDs
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We can obtain Rxpx from (13), resulting in

B = [wellgk & — Asgigr—1 + B Xk (Xi Wi1) (20)

AfPLgk-1 — PLXe (XL Wi_1)
Note that the new oy minimizes f(Wk_1 + axpx) but, due
to the normalization of wg, the minimum is not achieved
at each iteration. The problem of inexact line search has
been addressed in [6, 11, 12] and simulations have shown
that it doesn’t affect the convergence of the algorithm very
much. Expressions of o, such as the one shown in (10),
can be used without compromising the performance of the
algorithm.

5. UNCONSTRAINED OPTIMIZATION
USING THE CG ALGORITHM

It is possible to reformulate the optimization problem so
that the unit-norm constraint can be incorporated in the
cost function. In [7] a new cost function is formulated,
taking into account the constraint. The cost function then
becomes

p(wiwi —1)?
1

WERka

fw) = HE2

(21)

The gradient vector V f(w)7 associated with this cost func-
tion is given by

Vf(W)T =Riwir + p(w,{wk — 1)Wk (22)

and g = ~Vf(w)T. A lower bound for 4 can be found in
[7] and is given by

u > tr(R)/2 (23)
where tr(R) is the trace of the matrix R. In order to ap-
ply this cost function, the CG algorithm for nonquadratic
functions presented in [10] will be used. Since the new cost
function is quadractic, the global minimum will always be
found. However, 1t does not involve the computation of the
Hessian as in [7, 8]. The new algorithm is given by

Set initial cond.: wo = [1,0,...,0], go =[-1,0,...,0],

P1 = go, k =1.
[+2
P m (24)
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2980



Pk Bk—1

= e (26)
Wi = Wi_1+ @Dk (27)
g = —Vf(wi)" (28)
T

8k Sk
= =2k 29
B P75, (29)
Prt1 = 8k + BrDs (30)

where ¢ is a small number.

6. SOLVING GENERALIZED EIGENSYSTEM
PROBLEM

If the noise covariance matrix is known a priori, we can use
the CG algorithm formulated above to solve the generalized
eigensystem problem, as suggested in [3, 8], when the noise
is not white. Then we have

Riwy = AZwy (31)
where Z is the covariance matrix of the colored noise. The

unit-norm constraint (eq. (12)) in the algorithm described
by (10)-(15) has to be modified to

wiZwy = 1. (32)
This can be accomplished by computing
Wi = wk/wawk (33)
instead of (12) in the constrained CG algorithm. In the
unconstrained version, the cost function should be modified
to [8]
T T 2
w(wy Zwy — 1
fwy = e Bewe sl Zwe 1) (g

and Vf(w)T becomes

Viw)T = Rywy — p(wi Zwy, — 1)Zwr.  (35)

7. SIMULATIONS

Consider two equal-power sinusoids of normalized frequen-
cies 0.3 and 0.4 in white noise, at 10 dB SNR, with noise
variance equal to 1 and N = 7 (FIR filter of order 6). The
mean and standard deviation shown in Table 1 were ob-
tained by using the values of the last 100 iterations. The
plots in Figs. 1 and 3 show the performance of the LMS
algorithm [1], with gras = 0.001. Figs. 2 and 4 show
the improvement in performance when using the proposed
constrained CG algorithm. Here A; = o = 0.99. Fig. 5
shows the performance of the least-squares algorithm de-
scribed in [2], with Ay = 0.99. Using equations (17) and
(20) in the constrained CG algorithm, there was no sub-
stantial improvement in the performance, showing that the
slight loss of conjugacy is well tolerated by the algorithm.
Fig. 6 shows the performance of the unconstrained CG al-
gorithm, with ¢ = 10000 and o = 0.001.
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Fig. 1. Spectral estimates: LMS algorithm.
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Fig. 2. Spectral estimates: constrained CG algo-
rithm.

8. CONCLUSION

A method for spectral estimation has been presented. It
is based on the adaptive version of Pisarenko’s harmonic
retrieval method. The modified Conjugate Gradient al-
gorithm was used in the updating of the coefficients of
the adaptive transversal filter. Two versions of the algo-
rithm were presented and their extension for the case of a
known noise-covariance matrix were shown. The proposed
algorithms have a fast convergence rate, are computation-
ally more efficient than the least-squares type algorithms
[2, 7, 8], and are suitable for sample-by-sample processing.
Simulations illustrating their performance have been given.

Table 1. Simulation results for the algorithms dis-
cussed in the text.

f1 f2
mean | std mean | std
LMS 0.2965 | 0.0049 | 0.3956 | 0.0055
constrained CG 0.2967 { 0.0024 | 0,3978 | 0.0023
Least-squares 0.3086 S 0.4238 ISR
unconstrained CG | 0.2993 | 0.0015 | 0.4005 | 0.0018
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Fig. 6. Spectral estimates: unconstrained CG al-
Fig. 3. Spectral estimates: LMS algorithm. gorithm.
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