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ABSTRACT

We describe and analyze two approaches to the implemen-
tation of the Conjugate Gradient algorithm for adaptive
filtering. In particular, their convergence rate and misad-
justment are compared. A new analysis approach in the
z-domain is used in order to find the asymptotic perfor-
mance, and stability bounds are established. The behavior
of the algorithms in finite word-length computation are de-
scribed and dynamic range considerations are discussed. It
is shown that, close to steady-state, the algorithms’ behav-
iors are similar to the Steepest Descent algorithm, where
the stalling phenomenon is also observed. Using 16-bit
fixed-point number representation, our simulations show
that the algorithms are numerically stable.

1. INTRODUCTION

In recent years, many adaptive filtering algorithms based on
the Conjugate Gradient (CG) method of optimization have
been reported [3, 4, 6, 8, 9, 13]. In these works, several mod-
ifications have been proposed to improve the performance
of the CG algorithm for various applications, but usually
the analysis of the proposed algorithms has not been shown.
It is well known that the CG algorithm has a faster conver-
gence rate than the Steepest Descent method [1, 10], and
it also has lower computational complexity when compared
to the classic recursive least squares (RLS) algorithm [3].
But most of the analyses of the CG algorithm can only
be found in the optimization and matrix computation lit-
erature. Here we will describe two of the CG algorithms
that have been proposed in [3, 6], from the signal process-
ing point of view, and we will obtain estimates of their
asymptotic performance. Also, their performance under fi-
nite word-length effects will be discussed. It will be shown
that, due to the highly nonlinear nature of the algorithms,
a linearized quantization model, in general, cannot be ap-
plied, as has been used for the LMS [5], NLMS [7} or RLS
|2] algorithms.

We present the analysis of two approaches to the imple-
mentation of the CG algorithm in adaptive filtering. The
first. one, which we call CG1, assumes a variable autocor-
relation matrix R and cross-correlation vector b which are
updated for each input data sample, and only onc itera-
tion of the algorithm is performed per time instant. The
second approach assumes constant R and b within the it-
erations, and N or fewer iterations are performed per input
data sample, where N is the dimension of R. We call this
algorithm CG2.

It has been shown, in the quadratic optimization litera-
ture that the CG algorithm converges in finite steps for a
certain fixed R [1, 10]. This is used in algorithm CG2, de-
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scribed here and also in [3]. The advantage of this approach
1s that the convergence rate is independent of the eigenvalue
spread of R, while the disadvantage is that, when a finite
data window is used to estimate the autocorrelation and
cross-correlation, the output mean squared error is depen-
dent on the length of the data window.

In the CG1 algorithm and also in [6}, both finite data win-
dows and exponentially decaying data windows can be used,
although an exponentially decaying data window gives bet-
ter performance due to the better estimation of R and b
that results.

2. THE CG ALGORITHMS

Algorithm CG1: The CG algorithm using the first ap-
proach can be found in {6, 13]. In [6], the algorithm mini-

mizes a cost function defined as f(w) = WTRW/2 +bTw.
It is described by the following equations:

Set initial conditions: wo = 0, g¢ = bo, p1 = go, n = 1.
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where d(n) is the desired response, a(n) is the step size
that minimizes a cost function f(w), #(n) provides quasi-
R-conjugacy for the direction vector p(n), and g(n) is the
residual vector defined as g(n) = —VF(w)7. "R(n) is the
N x N sample correlation matrix of the input data vector
x(n), and it is computed as

R(n) = A\ R(n — 1) + x(n)x(n)" (6)

where A; is the forgetting factor of the exponentially de-
caying data window. The parameter 5 in (1) controls the
convergence of the algorithm and must be set within the
range (Ar —0.5) <n < Ay [6].

In state-space notation, the algorithm can be written as

W(n) I a(m)l a(n)g(n — 11
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(n — 1) + K(n)d(n) .
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Algorithm CG2: Following the same approach used in
[3, 6] !, the next CG algorithm can be described as follows:

Set initial cond.: w(0) = 0. For cach instant » compute:

Start:
—MZX(n—z n~z)T (7)
1 M—-1
d(n —0)x(n —1)
g(0) = b(n) — R(n)w(0), (1) = g(0)
for k =1 to N do:
glk—1)7"g(k—1)
alk) = 8
B @ Rl 1
w(k) = w(k—1)+ a(k)p(k) (9)
g(k) g(k— 1) — a(k)R(n)p(k) (10)
SO g(k) g (k) ,
k) = gk~ 1)Tg(k—1) ()
p(k+1) = g(k)+B(k)p(k) (12)

After N iterations,

w(0)

7

w(n) = w(N)
n+1

goto Start

Notice that R(n) is fixed throughout the k iterations and
only the final vector w(N) is of interest.
In state-space notation, CG2 can be written as

w(k) 1 a(k)l a(k)a(k — 1)1
[ B(k) J =] 0 I-okRH) —a®@)ik-1RM0N)
D(k) 0 1 Bk — DI
wik—1) ~ _ 0
[ gk~ 1) ] + [ (b(n) = R(n)w(0)5(k) | -
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3. CG ALGORITHM IN SIGNAL-FLOW
GRAPH REPRESENTATION AND

ASYMPTOTIC ANALYSIS

Using the state-space representation given above, we can
view the CG algorithms as nonlinear time-varying digi-
tal filters. Consider the CG1 algorithm and, in order
to simplify its analysis, let’s assume that E{o(n)) = &,

E(B(n)) = B, E(b(n)) = b and E(R(n)) = R are con-
stants. Then we can view the system as linear, time-
invariant. Furthermore, let’s define W = Z{E(w(n))},

G=Z{E(gh)}, P = Z{E(p(n))} and note that (3) can

also be written as

= b(n)u(n) — R(n)w(n). (13)
Now we can find the transfer function for W using (2),
(5) and (13). The signal-flow graph representation of these

three equations is shown in Fig. 1 where we have, after

g(n)

1 The algorithin presented in [3] has a different formulation for
alk), g(k) and p(k + 1), but computationally it has the same
behavior as the algorithm CG2 described here.
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Fig. 1. Signal-flow graph representation of the CG
algorithm.

taking the expectation on both sides of the equations and
then the z-transform:

W=W:""+aP (14)
P =P+ G (15)
G= bzl —~ RW. (16)

Solving for W, we get
W — <(:—1)(z—/3’)1+(sz>l / c:ybz .
(2 — B) (z=B)z~1)

Now, since W(z) = W*(z), the one-sided z-transform, we
can use the Final Value Theorem [14], resulting in

(17)

lim E(w(n)) = lim(z — )W (z) = R™'b.
z=1 .

n—0co

(18)

The above limit exists if (= — 1)W*(2) is stable, so we must
have || < 1 and the roots of
det({z — 1)(z -

I+ aRz)=0 (19)

must le inside the unit circle. (18) shows that E(w(n)) will
converge to W, for n — oo, where w, is the optimum weight
vector. We can apply a unitary transformation to R so
that R = QAQY and, knowing that det(QAQ”) = det(A),
where A is a diagonal matrix whose elements A; are the
eigenvalues of R, (19) becomes

I+

If =0, we have z + &\, —1 =0 and 2 > aX; > 0. A
sufficient condition for the stability of the system is

(@Xi = (B4 1))z +f)=0. (20)

2
— > a > 0.

For 0 < 3 < 1, from the placement of the zeros of a second
order polvnomial equation, we have

aX; — (B+1)=—2y/Bcosb. (21)

Then

-2 B<a)\i—([§+1)<2\/§

(VB -1 <ax < (VB+1) (22)
and a sufficient condition for the stability of the system is

N(VB-1) NGB 1

<a<
irR trR

(23)



For small values of 3, we have

N
—e< o< —=+¢

R trR

where ¢ is a small number, and for § — 1, we have

4N
0<a<————

For the CG2 algorithm, since f{(n) and f)(n) are constant
throughout the k iterations, the analysis presented in [1, 10]
can be applied.

3.1.

Consider the algorithm described in [3] and CG2, where a
finite-length block of data is used. It has been shown in [3]
that the convergence rate doesn’t depend on the eigenvalue
spread and that the final misadjustment is inversely propor-
tional to the data window length. The conclusion about the
convergence rate at first may seem to disagree with what
is shown in [1, 10], but one must take into consideration
the way the CG algorithm was implemented in [3], where
the updated weight vector at each time instant n 1s the last
updated weight vector after & iterations (usually & = N),
so we have

Convergence and Misadjustment

w(n) = R(n)""b(n). (24)

This means that, at each time instant n, W(n) is the op-
timum solution for the given R(n) and b(n), so that the
convergence of the algorithm in n will not depend on the
convergence of the algorithm in k. For CG1, where an ex-
ponentially decaying data window is used, and the updated
weight vector is obtained as a result of a single iteration, the
convergence will depend on the eigenvalue spread. Using
variable R reduces substantially the computational com-
plexity of the algorithm. In steady-state, as R(n) — R,
the misadjustment for CG1 will be equal to the misadjust-
ment of the RLS algorithm, since both algorithms minimize
the same cost function [11].

Now, consider CG2 and the System Identification (SI)
configuration described in [11, 14]. The desired response
is the output of the FIR filter with optimum weight coefhi-
cients d(n) = x(n)” wo (with no measurement noise). The
output mean-squared-error is given by

e(n) d(n) —x(n)" %(n)
x(n) " (wo = W(n)) = x(n)"e(n)

i

Ble(n?] = E[e(n)"x(n)x(n)"e(n)] = tr[RK(n)]

where K(n) = E(e(n)e(r)T) [11]. For the SI configuration
with WGN as the input signal, R = 021 and we have

E[e(n)2] = aiHK(n) = a'iE(He(n)Hz).

When using R(n) to estimate R, we have to consider
the variance of the estimation, and it can be shown that
var(Fi;(n)) /= my/M [15], where mq = FE[z!] is the 4th-
order moment of z;(n) and 7;j(n) is a element of R(n).
For Gaussian input signals, the kurtosis of the signal,

vy = E[x?]/ai, is 3, 50 we have

~
~

(25)

=l

var(ri;(n)) =3
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Table 1. Performance for various lengths of data
windowing. o2 = 0.25, N =5, ||w,||?> = 1.3071 with no
measurement noise, and with results averaged over
50 independent trials.

M [ MSE (Simul.) [ MSE (Theor.)
5 | —25.53 dB —33.38 dB
10 | =33.30 dB —39.40dB
T15 [ =39.09dB —42.92 dB
20 | —43.02dB —45.42dB
75 [ —46.04 dB —47.36 dB

Using the same reasoning, we have

var(i()) = 3% [wel - (26)

Referring to (24), we can use a gross approximation and
consider that

o2 E(|le(n)|F) & oZvar (i, (m))var(bi(n)

and

Ble(n)?) & 2 [we P

This shows the dependence of the misadjustment on the
length M, as has been shown in the simulation results in [3].
Table 1 shows the performance of CG2 for various values of

M.
4. FINITE WORD-LENGTH EFFECTS

Due to the nonlinear nature of the CG algorithm, it is not
possible to use additive quantization noise to model the
quantization effects. This is due to the fact that quantizing
the variables in the CG algorithm will lead some of them
to zero, changing completely the behavior of the algorithm.
This is particularly true for the variables a(n) and f(n).
Consider, for example, #(n) as in (4), in fixed-point com-
putation. In order to be able to update p(n + 1), it is
necessary to have

(n— 11 a(n 1
Q[Q[(g(n)~g(n D) gn)].Q Q[g(n_l)Tg(n_l)]H

> 9= B-1

Qllg(n) —gln - 1))Tg(n)] > 2777
> Qlgi(n) = gi(n— 1)gi(n)] 2 2777

where B is the number of bits used to represent the frac-
tional part of a number in fixed-point notation (see [5, 7])
and Q] is the quantization operation. This implies that
each element of g(n), g:(n), must satisfy

gi(n) > 2 7FV

ie., only half of the dynamic range of g;(n) is used in the
computation of F(n). Usually, when the algorithm con-
verges, the residual vector g(n) will be close to zero. Due
to quantization, the new value of F(n) will be zero and
p(n -+ 1) will not be updated. The algorithim, under these
circumstances, will behave like the Steepest Descent algo-
rithm, where p(n + 1) will be equal to the residual vector
g(n). Figs. 2 and 3 show the values of a(n) and f(n) for a
single run of CG1, in fixcd-point artthmeotic with Ay = 0.99,
n =009 N =20, 062 =0.1, SNR=30 dB, using 10 bits for
the fractional part and six bits for the integer part of the
number representation.

(27)
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Fig. 2. 8(n) in fixed-point computation.

4.1. Dynamic Range
As we saw previously, for the computation of #(n) only half
of the dynamic range is effectively used. This also happens
with the computation of «(n) in fixed-point, due to the
inner product appearing in its numerator. When o(n) is
zero due to quantization, the algorithm stops updating the
weight vector. This is known as the stalling phenomenon
[5, 7).

Now, consider the computation of R{n). Rewriting (6),
we can see that

R(n) = Z Nox(n = )x(n — )7

and E(R(c0)) = S22 AR = = R. For values of Ay

=5,

close to one, E(R(r)) is large and we would require ex-
tra bits to correctly compute R(n) without saturation. A
normalized

R(n) = A;R(n — 1) + (1 = Ap)x(n)x(n)”
and
b(n) = Asb(n — 1) + (1 — Af)d(n)x(n)

is preferred in this case, and the new residual vector will
become

g(n) = Asg(n — 1) — a(n)R(n)p(n)

+H(1 = A)x(n)(d(n) — x(n) w(n - 1)).

The vector p(n) can also be normalized, resulting in the
so-called Normalized CG algorithm [12], where we have

g(n) + B(n)p(n)
14+ 8(n)

Note that this normalization is not very effective under
fixed-point computation because of the quantization effect
explained previonsly. When the algorithm is close to con-
vergence ((n) will be small and, when quantized, will be-
Col1e Zero.

p(n+1) =

5. CONCLUSION

In this paper, we have considered two approaches to the
implementation of the Conjugate Gradient algorithm for
adaptive filtering. These two approaches have been pre-
sented previously in [3, 6]. Here, their convergence rate
and misadjustment were compared. A new z-domain ap-
proach was used to find the asymptotic performance, and
stability bounds for & and 3 were established. Finally, the
behavior of the algorithms in finite word-length computa-
tion were described and dynamic range considerations were
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Fig. 3. a(n) in fixed-point computation.

discussed. It has been shown that, close to steady-state,
the algorithms’ behaviors are similar to the Steepest De-
scent algorithm, where the stalling phenomenon has also
been observed. Using 16-bit fixed-point number represen-
tation, the simulations have shown that the algorithms are
numerically stable.
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