March 20, 2000
THE SECRET HISTORY OF LEAD
Enter Du PontIn 1919 GM purchased Kettering's Dayton research laboratory. The following year the company installed him as vice president of research of the renamed General Motors Research Corporation.
No longer the shambling, anarchic outfit it had been under the inveterate risk-taker W.C. Durant, GM was now to be run in the militarily precise mold of E.I. du Pont de Nemours & Company of Wilmington, Delaware. Awash in a sea of gunpowder profits from World War I, the du Pont family had been increasing its stake in GM since 1914. By 1920 it controlled more than 35 percent of GM shares and moved to pack the board, installing professional management, with the du Pont faction taking control of the corporation's all-powerful finance committee.
Caught short by a margin call in the recession of 1920, Durant, GM's colorful founder, lost his stake and was forced by the du Pont family to walk the plank (he would spend his final days running a bowling alley). One of the clan's craftiest patriarchs, Pierre du Pont, was coaxed from retirement and named GM's interim president; Alfred Sloan, who had demonstrated the coldhearted allegiance to the bottom line the du Ponts revered, became executive vice president preparatory to assuming the top slot. The pressure on all concerned, including Kettering and his research division, was to make money and to make it fast.
Lest there be any misunderstanding, Sloan wrote to Kettering in September of 1920, alerting him to the du Ponts' new math: "Although [the Research Corporation] is not a productive unit and a unit that is supposed to make a profit, nevertheless the more tangible result we get from it the stronger its position will be.... It may be inferred at some future time...that we are spending too much money down there [in Dayton] and being in a position to show what benefits had accrued to the corporation would strengthen our position materially."
That time would come soon enough for Kettering to deliver. An air-cooled engine he'd championed--copper-cooled, he called it--would soon prove a costly disaster for GM. Fortunately for him, immediately after joining GM he had given his trusted assistant Midgley two weeks to find something to ignite the new management's interest in funding continued fuel research. Though it would take somewhat longer than two weeks to fire their masters' enthusiasm, "Midge" succeeded.
And the Winner Is...The effect of this sudden time constraint was striking. As GM researcher and Kettering biographer T.A. Boyd noted in an unpublished history written in 1943, Midgley's main research in 1919-20 had been to make alcohols out of olefins found in petroleum through reactions with sulfuric acid. (Farm alcohol was one thing, but a patentable process for production of petroleum-derived alcohol--a possible money-maker--was quite another, one of considerably greater interest to the corporation.) "But in view of the verdict setting a time limit on how much further the research for an antiknock compound might continue," Boyd said, "work was resumed at once in making engine tests of whatever further compounds happened to be available on the shelf of the lab...or which could be gotten readily."
As noted earlier, Midgley tested many compounds before isolating tetraethyl lead in December 1921. In the early days, he would attribute the discovery of TEL's antiknock properties to "luck and religion, as well as the application of science." In a 1925 magazine article, he would recall false trails with iodine, aniline, selenium and tellurium before hitting upon lead. Curiously, his article omitted any reference to the alcohol-gasoline blend he'd patented just five years earlier.
Another oddity: The exact number of compounds tested prior to TEL's discovery varies dramatically in different accounts. As Professor William Kovarik of Radford University has observed, confusion reigns in part because the lab's day-to-day test diaries have never been released to the public by the General Motors Institute (GMI) archive. In the words of one archivist there, GM's lead archives have been "sanitized." One 1925 article in the Literary Digest put the number at 2,500 compounds tested, while The Story of Ethyl Gasoline, a 1927 pamphlet released by a company Midgley would help found, states that 33,000 were studied. Another time, he claimed 14,991 elements were examined, while a 1980 Ethyl corporation statement set the number at 144. This question is important because GM's discovery of lead's antiknock properties, which initially caused little internal excitement, would be hailed in popular media and later cited in polytechnical texts as a model of rational, orderly scientific inquiry that sought the single best answer to the knock question. A more realistic view of events is that TEL's re-emergence in the twenties was the result of a crude empirical potshot that was understood to promise a landslide of earnings over time.
Apprised of Midgley's discovery that one part TEL could be used to fortify 1,000 parts of gasoline, Kettering proposed the name "Ethyl" for the new antiknock fluid, a mild irony in light of both men's longtime--and soon to fade--interest in ethyl alcohol. At researcher Boyd's suggestion Ethyl was dyed red. There was as yet, however, no plan to market Ethyl. Indeed, in July 1922, seven months after TEL's discovery, J.W. Morrison of the GM Patent Department would encourage Midgley to "see if the U.S. Industrial Alcohol Co. have opened a valuable line of research. Mr. Clements [the lab manager at GM] stated some time ago that it might be worth our while to carry our investigations further on the problem of utilizing alcohols in motors. I think he mentioned specifically combinations of alcohol and gasoline."
From the corporation's perspective, however, the problems with ethyl alcohol were ultimately insurmountable and rather basic. GM couldn't dictate an infrastructure that could supply ethanol in the volumes that might be required. Equally troubling, any idiot with a still could make it at home, and in those days, many did. And ethanol, unlike TEL, couldn't be patented; it offered no profits for GM. Moreover, the oil companies hated it, a powerful disincentive for the fledgling GM, which was loath to jeopardize relations with these mighty power brokers. Surely the du Pont family's growing interest in oil and oil fields, as it branched out from its gunpowder roots into the oil-dependent chemical business, weighed on many GM directors' minds.
In March 1922, Pierre du Pont wrote to his brother Irénée du Pont, Du Pont company chairman, that TEL is "a colorless liquid of sweetish odor, very poisonous if absorbed through the skin, resulting in lead poisoning almost immediately." This statement of early factual knowledge of TEL's supreme deadliness is noteworthy, for it is knowledge that will be denied repeatedly by the principals in coming years as well as in the Ethyl Corporation's authorized history, released almost sixty years later. Underscoring the deep and implicit coziness between GM and Du Pont at this time, Pierre informed Irénée about TEL before GM had even filed its patent application for it.
The Rise of Tetraethyl LeadWith the application filed, the groundwork was laid for manufacture of TEL. An October 1922 agreement contracted Du Pont to supply GM. Signing for GM was Pierre du Pont; signing for Du Pont: his brother Irénée. Manufacturing began in 1923 with a small operation in Dayton, Ohio, that made 160 gallons of tetraethyl lead a day and shipped it out in one-liter bottles, each of which would treat 300 gallons of gasoline.
In February 1923 the world's first tankful of leaded gasoline was pumped at Refiners Oil Company, at the corner of Sixth and Main streets, in Dayton, Ohio, from a station owned by Kettering's friend Willard Talbott. But four months earlier, an agitated William Mansfield Clark, a lab director in the US Public Health Service, had written A.M. Stimson, assistant Surgeon General at the PHS, warning that Du Pont was preparing to manufacture TEL at its plant in Deepwater, New Jersey. It constituted a "serious menace to public health" he stated, with reports already emerging from the plant that "several very serious cases of lead poisoning have resulted" in pilot production.
Clark additionally speculated that widespread use of TEL would mean "on busy thoroughfares it is highly probable that the lead oxide dust will remain in the lower stratum." Estimating that each gallon of gasoline burned would emit four grams of lead oxide, he worried that this would build up to dangerous levels along heavily traveled roads and in tunnels.
* * *
Stimson was troubled enough by Clark's letter to request that the PHS's Division of Pharmacology conduct investigations; unfortunately, the division's director responded, such trials would be too time-consuming. He suggested that the PHS rely upon industry to supply the relevant data, a spectacularly poor plan that would amount to government policy for the next forty years.v
Perhaps spurred by Clark's missive and Stimson's concern, in December 1922 the US Surgeon General, H.S. Cumming, wrote Pierre du Pont: "Inasmuch as it is understood that when employed in gasoline engines, this substance will add a finely divided and nondiffusible form of lead to exhaust gases, and furthermore, since lead poisoning in human beings is of the cumulative type resulting frequently from the daily intake of minute quantities, it seems pertinent to inquire whether there might not be a decided health hazard associated with the extensive use of lead tetraethyl in engines."
But the Good News Is...The year 1923 did not begin well, then, for supporters of tetraethyl lead. In January, on account of lead poisoning, Thomas Midgley was forced to decline speaking engagements at three regional panels of the American Chemical Society, which had awarded him a medal for his discovery. "After about a year's work in organic lead," he wrote, "I find that my lungs have been affected and that it is necessary to drop all work and get a large supply of fresh air." He repaired to Miami.
Before leaving town, Midgley penned a reply to Cumming's letter, which had been passed on to him by Pierre du Pont. Although the question "had been given very serious consideration," he wrote, "...no actual experimental data has been taken." Even so, Midgley assured the Surgeon General, GM and Du Pont believed that "the average street will probably be so free from lead that it will be impossible to detect it or its absorption." In other words, TEL, the deadly chemical curiosity, was being brought to market without any thought or study as to its public health implications, but rather on the hopeful hunch of a clever mechanical engineer who had just been poisoned by lead.
Around this time, Midgley had also begun to receive letters expressing grave concern over TEL from well-known public health and medical authorities at leading universities, including Robert Wilson of MIT, Reid Hunt of Harvard, Yandell Henderson of Yale (America's foremost expert on poison gases and automotive exhaust) and Dr. Erik Krause of the Institute of Technology, Potsdam, Germany. Krause called TEL "a creeping and malicious poison," and he told Midgley it had killed a member of his dissertation committee. Charles Kettering may have been concerned by this growing chorus of TEL critics, but the early months of 1923 saw his mind preoccupied with another matter. In May of that year, after four costly years of development, Kettering's beloved copper-cooled engine was abandoned as a production program, a high-profile embarrassment within the company and the larger automotive community. "It was then," wrote Kettering's research assistant and biographer, T.A. Boyd, some years later, "that his spirits reached the lowest point in his research career."
The abject failure of the copper-cooled engine led the fiercely proud Kettering to believe his personal capital in the company had been terminally depleted. "Since this thing with the Copper-Cooled Car has come up," he wrote Alfred Sloan (who became GM's president in 1923), "the Laboratory has been practically isolated from Corporation activities." Kettering's shame was so enormous that he tendered his resignation in a letter to Sloan. "I regret very much that this situation has developed. I have been extremely unhappy and know that I have made you and Mr. du Pont equally unhappy.... work here at the Laboratory, I realize, has been almost 100% failure, but not because of the fundamental principles involved. Enough may come out of the Laboratory to have paid for their existence but no one will care to continue in Research activities as the situation now stands."
'My Dear Boss'Sloan declined to let Kettering go. But America's most famous automotive engineer after Henry Ford emerged with a renewed sensitivity to the profit-making needs of his corporation. In this regard, TEL held out an immediate lifeline. Writing Kettering from Florida in March 1923, Midgley related a mad brainstorm whose relevance had now become fully clear to Kettering. "My dear boss," he began, "The way I feel about the Ethyl Gas situation is about as follows: It looks as though we could count on a minimum of 20 percent of the gas sold in the country if we advertise and go after the business--this at three cent gross to us from each gallon sold. I think we ought to go after it as soon as we can without being too hasty."
Midgley barely scratched the surface of the wealth to come. With a legal monopoly based on patents that would provide a royalty on practically every gallon of gasoline sold for the life of its patent, Ethyl promised to make GM shareholders--among whom the du Ponts, Alfred Sloan and Charles Kettering were the largest--very rich. Profit-free ethanol, indeed. As Kovarik has calculated: "With gasoline sales [in 1923] around six billion gallons per year, 20 percent would come to about 1.2 billion gallons, and three cents gross would represent $36 million. With the cost of production and distribution running less than one cent per gallon of treated gasoline, more than two thirds of the $36 million would be annual gross profit. Of course, within a decade 80 percent of the then 12 billion gallon market used Ethyl, for an annual gross of almost $300 million."
The fears of excessive hastiness expressed in Midgley's letter were evidently allayed. In April 1923, one month after he'd performed his riveting calculations, the General Motors Chemical Company was established to produce TEL, with Charles Kettering as president and Thomas Midgley as vice president.
Octane, the Motorist's FriendBeginning in 1921, GM's executive committee began to articulate the first principles that would come to be known as Sloanism--that is, planned obsolescence and product differentiation through speed, power, style and color; "a car for every purse and purpose," as Sloan was fond of saying.
Between 1922 and the end of the decade, Sloan and his GM associates would devise marketing strategies that would see GM overtake Ford as the world's largest automobile manufacturer and set the tone for the next fifty years of American automotive consumption. Central to this growth would be an awareness that consumers were no longer looking merely for basic transportation, which was the stock in trade of Ford's beloved Model T. In addition to consumer financing (which Ford opposed), Sloan was convinced that style, snob appeal and speed would help GM steal its customers away. He was right.
Following the failure of his copper-cooled engine, Kettering rejigged his arguments for TEL for internal--definitely not public--consumption. As it happened, the new additive could be fitted neatly into the Sloanist equation. For while it was initially seen by Kettering and his staff as a way to cure knock and to husband fossil-fuel supplies, the high compression it enabled in motors was just as easily exploited to make cars faster and more powerful, thus easier to sell. Alan Loeb, a former EPA attorney and lead historian who has examined the period closely, has neatly summed up Kettering's conversion: "By 1923...it was clear that Kettering's original purpose for the antiknock research had given way to GM's desire to improve auto performance without regard for its effect on fuel economy.... Kettering did not give up on efficiency and conservation as his own ideals, but ever after he knew better than to try to push a product that would not sell. In later years, even as Kettering's advocacy of conservation became more and more public, it represented GM's true motive less and less."
Tellingly, Ethyl's earliest advertisements dealt solely with speed and power and invariably neglected to mention its active ingredient: lead. Boasted a September 1927 ad that ran in National Geographic: "As an Ethyl user, you have the benefits of greatly increased speed, more power on hills and heavy roads. Quicker acceleration and complete elimination of 'knock.' But the real high compression automobile is here at last! Ethyl gasoline has made it possible! Ride with Ethyl in a high compression motor and get the thrill of a lifetime."
With the advent of the Depression in the thirties, Ethyl's advertising nodded to the economic realities of the day but still focused on power. An ad that ran in February 1933 contains a Norman Rockwell-esque portrait of a small boy who is complaining to his embarrassed father, "Gee, Pop--they're all passing you." The accompanying text rubs it in. "They didn't pass you when your car was bright and new--and you still don't like to be left behind. So just remember this: the next best thing to a brand new car is your present car with Ethyl."
LiftoffWith the formation of the GM Chemical Company, work on a large-scale Du Pont TEL plant began immediately. Irénée du Pont hailed his company's technical director, W.F. Harrington: "It is essential that we treat this undertaking like a war order so far as making speed and producing the output, not only in order to fulfill the terms of the contract as to time but because every day saved means one day advantage over possible competition."
Significantly, GM's patent on TEL would have covered any threat from competing makers of lead additive. Thus, as Kovarik has reasoned, the competition referred to must have been from those who would have offered a different kind of antiknock. GM, Du Pont and TEL's other backers would long publicly claim there were no conceivable alternatives to the lead antiknock additive. But the facts were otherwise. Ethanol was still out there. And GM negotiated throughout the twenties with Germany's I.G. Farben over an additive it made from iron carbonyl. Then, in August 1925, Kettering himself joyously announced "Synthol," a blended automotive fuel of benzene and alcohol that promised to "double gas mileage." There was, as we shall see, an unexpected--and momentary--business need for Synthol. The point is, there were alternatives.
In a public relations coup, Ethyl leaded gasoline fueled the top three finishers at the Indianapolis 500 motor race on Memorial Day, 1923. With demand skyrocketing, Kettering signed exclusive contracts with Standard Oil of New Jersey (now Exxon), Standard Oil of Indiana (later Amoco, more lately merged with BP) and Gulf Oil (owned by the Mellon interests) for East Coast, Midwest and Southern distribution, respectively, of leaded gasoline.
Tetraethyl DeathIn August, Du Pont's TEL plant opened at Deepwater, New Jersey, across the Delaware River from Wilmington. Less than thirty days would pass before the first of several TEL poisoning deaths of workers there would occur. Not surprisingly, given Du Pont's stranglehold on all local media within its domain along the Delaware, the deaths went unreported.
Even so, news of these and similar deaths would inevitably come out. Realizing that its own medical research would be less than credible then, and having been turned down by reputable academics and the Public Health Service in its search for consultants to help "refute any false propaganda," GM hurriedly contracted the US Bureau of Mines in September 1923 to explore the dangers of TEL. Even by the lax standards of its day, the bureau was a docile corporate servant, with not an adversarial bone in its body. It saw itself as in the mining promotion business, with much of its scientific work undertaken in collaboration with industry. The bureau's presumptive harmlessness notwithstanding, to its written agreement with GM was nonetheless added a remarkable proviso, that the bureau "refrain from giving out the usual press and progress reports during the course of the work, as [GM] feels that the newspapers are apt to give scare headlines and false impressions before we definitely know what the influence of the material will be."
Indicative of the bureau leadership's fundamental outlook was an exchange between the superintendent of its Pittsburgh field station, where the TEL investigation was being conducted, and the bureau's chief chemist, S.C. Lind. By letter, Lind had objected to t use of the trade name "Ethyl" when referring to tetraethyl lead gasoline.
"Of course their [GM officials] object in doing so is fairly clear, and among other things they are not particularly desirous of having the name 'lead' appear in this case. That is alright from the standpoint of the General Motors Company but it is quite a question in my mind as to whether the Bureau of Mines would be justified in adopting this name so early in the game."
The superintendent replied that omission of "the use of the word 'lead' in the interbureau correspondence" was intentional to prevent leaks to the papers. "If it should happen to get some publicity accidentally, it would not be so bad if the word 'lead' were omitted as this term is apt to prejudice somewhat against its use."
Indeed, lead had acquired a bad name by 1920, as scientific and public awareness of its supreme deadliness as an occupational and pediatric hazard was increasing. Then, in April 1924, two GM employees engaged in the manufacture of TEL at a pilot plant in Dayton also died of lead poisoning. Large numbers of nonfatal poisonings were noted at this time. Thomas Midgley was said to be "depressed to the point of considering giving up the whole tetraethyl lead program." But Kettering, emerging from his copper-cooled funk, wouldn't slow down. Two months later, he would urge Du Pont to step up production. At the same time, seeking even greater control over Bureau of Mines test results, GM stipulated that "all manuscripts, before publication, will be submitted to the Company for comment and criticism.
By any measure, the TEL constituency had experienced a run of rum luck, and in June 1924 GM president Sloan, "gravely concerned about the poison hazard" and deaths at TEL plants in Dayton and Deepwater, approved the formation of a medical committee, with J. Gilman Thompson, consulting physician to Standard Oil of New Jersey (which had been marketing Ethyl and dabbling in its manufacture), as chairman. Summing up the gloomy feeling all around at this time, Du Pont chairman Irénée du Pont wrote Sloan at GM that TEL "may be killed by a better substitute or because of its poisonous character or because of its [destructive] action on the engine."
Following its investigation, GM's medical committee delivered what was apparently a negative and highly cautionary report on TEL. But Irénée du Pont, having undergone some sort of conversion or, possibly, having remembered his family's lifelong devotion to profit at any cost, wrote Sloan on August 29, 1924, and told him not to worry: "I have read the doctors' report and am not disturbed by the severity of the findings." Another product his firm made--nitroglycerin--was even more hazardous to make, du Pont added breezily, while lead dust from car exhaust was but nothing compared to erosion from lead paint. Years later, this would become a major plank of TEL supporters' defense.
For some unknown reason, the report of Sloan's blue-ribbon medical committee, like many original documents referenced in GM reports on TEL, is not available in the company's public archives.
Send your letter to the editor to [email protected].
Copyright ©2000 The Nation Company, L.P. All rights reserved. Unauthorized redistribution is prohibited.
If you liked what you just read, you can subscribe to The Nation by calling 1-800-333-8536 or by following this link.
Please attach this notice in its entirety when copying or redistributing material from The Nation. The Nation encourages activists and friends of the magazine to share our articles with others. However, it is mandatory that academic institutions, publications and for-profit institutions seeking to reprint material contact us for permission. Click here for further information or to make a request.